... | ... | @@ -44,15 +44,13 @@ Code: https://github.com/TobyPDE/FRRN |
|
|
* Deep High-Resolution Representation Learning for Visual Recognition, Wang et al.<br>
|
|
|
Paper: https://arxiv.org/abs/1908.07919<br>
|
|
|
Code: https://paperswithcode.com/paper/deep-high-resolution-representation-learning-2
|
|
|
|
|
|
|
|
|
* ~~17.12.2019 Christian Schiffer~~
|
|
|
* ~~17.12.2019 Christian Schiffer~~<br>
|
|
|
==> updated by 22.1.2020
|
|
|
* ~~Deep High-Resolution Representation Learning for Visual Recognition <br>
|
|
|
https://arxiv.org/abs/1908.07919, Code: https://paperswithcode.com/paper/deep-high-resolution-representation-learning-2)<br>
|
|
|
Human Pose Estimation+Semantic Segmentation+Object detection; SOTA Cityscapes Val, #3 best model PASCAL Context~~
|
|
|
* ~~Multi-Scale Dense Networks for Resource Efficient Image Classification<br>
|
|
|
https://arxiv.org/abs/1703.09844)~~
|
|
|
* ==> updated by 22.1.2020
|
|
|
https://arxiv.org/abs/1703.09844)~~
|
|
|
* 17.12.2019 Hanno Scharr
|
|
|
* A General and Adaptive Robust Loss Function<br>
|
|
|
Jonathan T. Barron, Google Research <br> http://openaccess.thecvf.com/content_CVPR_2019/papers/Barron_A_General_and_Adaptive_Robust_Loss_Function_CVPR_2019_paper.pdf<br>
|
... | ... | @@ -63,12 +61,12 @@ A training schedule using filter pruning and orthogonal reinitialization |
|
|
|
|
|
### Done
|
|
|
|
|
|
* 17.12.2019 Joshua Scheidt<br>
|
|
|
* <span style="color:green"> Multi-Context Recurrent Neural Networks for Time Series Applications <br>
|
|
|
https://publications.waset.org/3524/pdf</span>
|
|
|
* <span style="color:green"> Global Sparse Momentum SGD for Pruning Very Deep Neural Networks <br>
|
|
|
* 17.12.2019 Joshua Scheidt
|
|
|
* Multi-Context Recurrent Neural Networks for Time Series Applications <br>
|
|
|
https://publications.waset.org/3524/pdf
|
|
|
* Global Sparse Momentum SGD for Pruning Very Deep Neural Networks <br>
|
|
|
https://arxiv.org/pdf/1909.12778v3.pdf
|
|
|
* ==> Journal Club 20 January 2020</span>
|
|
|
* ==> Journal Club 20 January 2020
|
|
|
|
|
|
|
|
|
|
... | ... | |