... | @@ -18,29 +18,10 @@ If you’re interested in more details about the Journal Club, please subscribe |
... | @@ -18,29 +18,10 @@ If you’re interested in more details about the Journal Club, please subscribe |
|
|
|
|
|
## Next Meeting
|
|
## Next Meeting
|
|
|
|
|
|
### 18 January 2021 Explainable Machine Learning
|
|
### 15 February 2021 Explainable Machine Learning
|
|
|
|
|
|
Virtual Meeting using [BigBlueButton](https://webconf.fz-juelich.de/b/wen-mym-pj7)
|
|
Virtual Meeting using [BigBlueButton](https://webconf.fz-juelich.de/b/wen-mym-pj7)
|
|
|
|
|
|
* Informed Machine Learning -- A Taxonomy and Survey of Integrating Knowledge into Learning Systems<br>
|
|
|
|
Laura von Rueden, Sebastian Mayer, Katharina Beckh, Bogdan Georgiev, Sven Giesselbach, Raoul Heese, Birgit Kirsch, Julius Pfrommer, Annika Pick, Rajkumar Ramamurthy, Michal Walczak, Jochen Garcke, Christian Bauckhage, Jannis Schuecker<br>
|
|
|
|
Learning, 18, 2019<br>
|
|
|
|
https://arxiv.org/pdf/1903.12394.pdf<br>
|
|
|
|
16 pages
|
|
|
|
|
|
|
|
* Theory-guided Data Science: A New Paradigm for Scientific Discovery from Data<br>
|
|
|
|
Anuj Karpatne, Gowtham Atluri, James H. Faghmous, Michael Steinbach, Arindam Banerjee,
|
|
|
|
Auroop Ganguly, Shashi Shekhar, Nagiza Samatova, and Vipin Kumar<br>
|
|
|
|
IEEE Transactions on Knowledge and Data Engineering, 29(10), 2017, 2318-2331<br>
|
|
|
|
https://arxiv.org/pdf/1612.08544.pdf<br>
|
|
|
|
12 pages
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
## Schedule for upcoming Meetings
|
|
|
|
|
|
|
|
### 15 February 2021 Explainable Machine Learning
|
|
|
|
|
|
|
|
* Unmasking Clever Hans predictors and assessing what machines really learn<br>
|
|
* Unmasking Clever Hans predictors and assessing what machines really learn<br>
|
|
Sebastian Lapuschkin, Stephan Wäldchen, Alexander Binder, Grégoire Montavon, Wojciech Samek, Klaus-Robert Müller <br>
|
|
Sebastian Lapuschkin, Stephan Wäldchen, Alexander Binder, Grégoire Montavon, Wojciech Samek, Klaus-Robert Müller <br>
|
|
Nat Commun 10, 1096 (2019)<br>
|
|
Nat Commun 10, 1096 (2019)<br>
|
... | @@ -53,6 +34,10 @@ Physical Review Letters, 124(1), 2020, 010508<br> |
... | @@ -53,6 +34,10 @@ Physical Review Letters, 124(1), 2020, 010508<br> |
|
https://arxiv.org/abs/1807.10300<br>
|
|
https://arxiv.org/abs/1807.10300<br>
|
|
5 pages + 11 pages Appendix :)
|
|
5 pages + 11 pages Appendix :)
|
|
|
|
|
|
|
|
Intro by Tobias Tesch (IBG-3)
|
|
|
|
|
|
|
|
## Schedule for upcoming Meetings
|
|
|
|
|
|
### 15 March 2021 Model uncertainty
|
|
### 15 March 2021 Model uncertainty
|
|
|
|
|
|
What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?<br>
|
|
What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?<br>
|
... | @@ -81,6 +66,24 @@ https://arxiv.org/pdf/1907.06890.pdf |
... | @@ -81,6 +66,24 @@ https://arxiv.org/pdf/1907.06890.pdf |
|
|
|
|
|
## Past Meetings
|
|
## Past Meetings
|
|
|
|
|
|
|
|
### 18 January 2021 Explainable Machine Learning
|
|
|
|
|
|
|
|
* Informed Machine Learning -- A Taxonomy and Survey of Integrating Knowledge into Learning Systems<br>
|
|
|
|
Laura von Rueden, Sebastian Mayer, Katharina Beckh, Bogdan Georgiev, Sven Giesselbach, Raoul Heese, Birgit Kirsch, Julius Pfrommer, Annika Pick, Rajkumar Ramamurthy, Michal Walczak, Jochen Garcke, Christian Bauckhage, Jannis Schuecker<br>
|
|
|
|
Learning, 18, 2019<br>
|
|
|
|
https://arxiv.org/pdf/1903.12394.pdf<br>
|
|
|
|
16 pages
|
|
|
|
|
|
|
|
* Theory-guided Data Science: A New Paradigm for Scientific Discovery from Data<br>
|
|
|
|
Anuj Karpatne, Gowtham Atluri, James H. Faghmous, Michael Steinbach, Arindam Banerjee,
|
|
|
|
Auroop Ganguly, Shashi Shekhar, Nagiza Samatova, and Vipin Kumar<br>
|
|
|
|
IEEE Transactions on Knowledge and Data Engineering, 29(10), 2017, 2318-2331<br>
|
|
|
|
https://arxiv.org/pdf/1612.08544.pdf<br>
|
|
|
|
12 pages
|
|
|
|
|
|
|
|
* Intro by Karim Mache, JSC, Earth System Data Exploration group
|
|
|
|
|
|
|
|
|
|
### 21 December 2020 Explainable Machine Learning
|
|
### 21 December 2020 Explainable Machine Learning
|
|
|
|
|
|
* Network Dissection: Quantifying Interpretability of Deep Visual Representations<br>
|
|
* Network Dissection: Quantifying Interpretability of Deep Visual Representations<br>
|
... | | ... | |