* Unmasking Clever Hans predictors and assessing what machines really learn<br>
Sebastian Lapuschkin, Stephan Wäldchen, Alexander Binder, Grégoire Montavon, Wojciech Samek, Klaus-Robert Müller <br>
Nat Commun 10, 1096 (2019)<br>
https://doi.org/10.1038/s41467-019-08987-4<br>
6 pages
* Discovering physical concepts with neural networks<br>
Raban Iten, Tony Metger, Henrik Wilming, Lidia del Rio, Renato Renner <br>
Physical Review Letters, 124(1), 2020, 010508<br>
https://arxiv.org/abs/1807.10300<br>
5 pages + 11 pages Appendix :)
Intro by Tobias Tesch (IBG-3)
* slides tbd
* from the meeting:
* reminder to register for the Juelich Challenges Hackathon [[here](https://hifis-events.hzdr.de/event/51/)]
* follow up paper worth reading: <br>
Lundberg et al 2020, __From local explanations to global understanding with explainable AI for trees__, Nature Machine Intelligence 2, pages56–67(2020)