* Network Dissection: Quantifying Interpretability of Deep Visual Representations<br>
David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, Antonio Torralba<br>
https://netdissect.csail.mit.edu/ <br>
CVPR 2017 paper, 8 pages
* GAN Dissection: Visualizing and Understanding Generative Adversarial Networks<br>
David Bau, Jun-Yan Zhu, Hendrik Strobelt, Bolei Zhou, Joshua B. Tenenbaum, William T. Freeman, Antonio Torralba<br>
https://gandissect.csail.mit.edu/ <br>
ICLR 2019 paper, 10 pages
...
...
@@ -41,9 +32,19 @@ tbd
## Past Meetings
### 16 November 2020 Explainable Machine Learning
### 21 December 2020 Explainable Machine Learning
Virtual Meeting using [BigBlueButton](https://webconf.fz-juelich.de/b/wen-mym-pj7)
* Network Dissection: Quantifying Interpretability of Deep Visual Representations<br>
David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, Antonio Torralba<br>
https://netdissect.csail.mit.edu/ <br>
CVPR 2017 paper, 8 pages
* GAN Dissection: Visualizing and Understanding Generative Adversarial Networks<br>
David Bau, Jun-Yan Zhu, Hendrik Strobelt, Bolei Zhou, Joshua B. Tenenbaum, William T. Freeman, Antonio Torralba<br>
https://gandissect.csail.mit.edu/ <br>
ICLR 2019 paper, 10 pages
### 16 November 2020 Explainable Machine Learning
* R. Roscher, B. Bohn, M. F. Duarte and J. Garcke, "Explainable Machine Learning for Scientific Insights and Discoveries," in IEEE Access, vol. 8, pp. 42200-42216, 2020 https://doi.org/10.1109/ACCESS.2020.2976199