Skip to content
Snippets Groups Projects
Select Git revision
  • 26238ed9b0f8f36c934e8a425e70672a2b8ae53c
  • master default protected
  • arbitrary-cut-order
  • staggered-max
  • unifed-object
  • no_Amalgamated
  • standard_stb
  • parallel_doc_fix
  • release_0.9.3
  • cmake_mpich_tests
  • update_install
  • external_VORO
  • cmake_add_soversion
  • iterative_method
  • cmake_install
  • fixes_042023
  • tensor_max
  • personal/schulz3/tensor_max
  • releases/v0.9
  • ForceBasedDevel
  • refactor
  • v0.9.3
  • v0.9.2
  • v0.9.1
  • v0.9.0
  • v0.9.0-rc2
26 results

loadbalancing

Video Prediction by GAN

This project aims to adopt the GAN-based architectures, which original proposed by Project Page(https://alexlee-gk.github.io/video_prediction/) Paper(https://arxiv.org/abs/1804.01523), to predict temperature based on ERA5 data

Getting Started

Prerequisites

  • Linux or macOS
  • Python 3
  • CPU or NVIDIA GPU + CUDA CuDNN

Installation

  • Clone this repo:
git clone -b master https://gitlab.version.fz-juelich.de/gong1/video_prediction_savp.git
cd Video_Prediction_SAVP
pip install -r requirements.txt

Miscellaneous installation considerations

  • In python >= 3.6, make sure to add the root directory to the PYTHONPATH, e.g. export PYTHONPATH=path/to/video_prediction_savp`.
  • For the best speed and experimental results, we recommend using cudnn version 7.3.0.29 and any tensorflow version >= 1.9 and <= 1.12. The final training loss is worse when using cudnn versions 7.3.1.20 or 7.4.1.5, compared to when using versions 7.3.0.29 and below.
  • Add the directories lpips-tensorflow and hickle (get from Workflow project to the PATHONPATH , e.g export PYTHONPATH=path/to/lpips-tensorflow
  • You may need install packages by pip on JUWELS/JURECA, followed the installation instruction from Workflow project

Download data

  • Download the ERA5 data (.hkl) from the output of DataPreprocess in the Workflow project
bash data/download_and_preprocess_dataset_era5.sh --data era5 --input_dir /splits --output_dir  data/era5 

Model Training

python scripts/train.py --input_dir data/era5 --dataset era5  --model savp --model_hparams_dict hparams/kth/ours_savp/model_hparams.json --output_dir logs/era5/ours_savp