diff --git a/pySDC/projects/Resilience/fault_stats.py b/pySDC/projects/Resilience/fault_stats.py
index 6bb22c98274b10a244cbdc22bcb1c5231761f74e..b75e47ded873f9e3dbdd4f552f3e6ba8d151f5f4 100644
--- a/pySDC/projects/Resilience/fault_stats.py
+++ b/pySDC/projects/Resilience/fault_stats.py
@@ -271,8 +271,10 @@ class FaultStats:
                 dat['bit'][i] = faults_run[0][1][4]
                 dat['target'][i] = faults_run[0][1][5]
                 dat['rank'][i] = faults_run[0][1][6]
+
             if crash:
                 print('Code crashed!')
+                dat['error'][i] = np.inf
                 continue
 
             # record the rest of the data
@@ -876,7 +878,7 @@ class FaultStats:
         args=None,
         strategies=None,
         name=None,
-        store=True,
+        store=False,
         ax=None,
         fig=None,
         plotting_args=None,
@@ -933,7 +935,7 @@ class FaultStats:
         return None
 
     def plot_recovery_thresholds(
-        self, strategies=None, thresh_range=None, ax=None, mask=None, **kwargs
+        self, strategies=None, thresh_range=None, ax=None, recoverable_only=False, **kwargs
     ):  # pragma: no cover
         '''
         Plot the recovery rate for a range of thresholds
@@ -942,7 +944,6 @@ class FaultStats:
             strategies (list): List of the strategies you want to plot, if None, all will be plotted
             thresh_range (list): thresholds for deciding whether to accept as recovered
             ax (Matplotlib.axes): Somewhere to plot
-            mask (Numpy.ndarray of shape (n)): The mask you want to know about
 
         Returns:
             None
@@ -961,16 +962,21 @@ class FaultStats:
             fault_free = self.load(strategy=strategy, faults=False)
             with_faults = self.load(strategy=strategy, faults=True)
 
+            if recoverable_only:
+                recoverable_mask = self.get_fixable_faults_only(strategy)
+            else:
+                recoverable_mask = self.get_mask()
+
             for thresh_idx in range(len(thresh_range)):
                 rec_mask = self.get_mask(
                     strategy=strategy,
                     key='error',
                     val=(thresh_range[thresh_idx] * fault_free['error'].mean()),
                     op='gt',
-                    old_mask=mask,
+                    old_mask=recoverable_mask,
                 )
                 rec_rates[strategy_idx][thresh_idx] = 1.0 - len(with_faults['error'][rec_mask]) / len(
-                    with_faults['error']
+                    with_faults['error'][recoverable_mask]
                 )
 
             ax.plot(
@@ -1689,7 +1695,7 @@ def main():
         stats_path='data/stats-jusuf',
         **kwargs,
     )
-    stats_analyser.run_stats_generation(runs=kwargs['runs'], step=12)
+    stats_analyser.run_stats_generation(runs=kwargs['runs'], step=25)
 
     if MPI.COMM_WORLD.rank > 0:  # make sure only one rank accesses the data
         return None
diff --git a/pySDC/projects/Resilience/paper_plots.py b/pySDC/projects/Resilience/paper_plots.py
index 04bea2d954fe57da81f3e0a7c2d0818d85eeae66..67f9aca486846800b8b44460bf08360a0887b6b9 100644
--- a/pySDC/projects/Resilience/paper_plots.py
+++ b/pySDC/projects/Resilience/paper_plots.py
@@ -20,6 +20,7 @@ from pySDC.projects.Resilience.strategies import (
     DIRKStrategy,
     ERKStrategy,
     AdaptivityPolynomialError,
+    cmap,
 )
 from pySDC.helpers.plot_helper import setup_mpl, figsize_by_journal
 from pySDC.helpers.stats_helper import get_sorted
@@ -392,6 +393,102 @@ def plot_fault_vdp(bit=0):  # pragma: no cover
     savefig(fig, f'fault_bit_{bit}')
 
 
+def plot_fault_Lorenz(bit=0):  # pragma: no cover
+    """
+    Make a plot showing the impact of a fault on the Lorenz attractor without any resilience.
+    The faults are inserted in the last iteration in the last node in x such that you can best see the impact.
+
+    Args:
+        bit (int): The bit that you want to flip
+
+    Returns:
+        None
+    """
+    from pySDC.projects.Resilience.fault_stats import (
+        FaultStats,
+        BaseStrategy,
+    )
+    from pySDC.projects.Resilience.hook import LogData
+
+    stats_analyser = FaultStats(
+        prob=run_Lorenz,
+        strategies=[BaseStrategy()],
+        faults=[False, True],
+        reload=True,
+        recovery_thresh=1.1,
+        num_procs=1,
+        mode='combination',
+    )
+
+    strategy = BaseStrategy()
+
+    my_setup_mpl()
+    fig, ax = plt.subplots(figsize=figsize_by_journal(JOURNAL, 0.8, 0.5))
+    colors = ['grey', strategy.color, 'magenta']
+    ls = ['--', '-']
+    markers = [None, strategy.marker]
+    do_faults = [False, True]
+    superscripts = ['*', '']
+    labels = ['x', 'x']
+
+    run = 19 + 20 * bit
+
+    for i in range(len(do_faults)):
+        stats, controller, Tend = stats_analyser.single_run(
+            strategy=BaseStrategy(),
+            run=run,
+            faults=do_faults[i],
+            hook_class=[LogData],
+        )
+        u = get_sorted(stats, type='u')
+        faults = get_sorted(stats, type='bitflip')
+        ax.plot(
+            [me[0] for me in u],
+            [me[1][0] for me in u],
+            ls=ls[i],
+            color=colors[i],
+            label=rf'${{{labels[i]}}}^{{{superscripts[i]}}}$',
+            marker=markers[i],
+            markevery=500,
+        )
+        for idx in range(len(faults)):
+            ax.axvline(faults[idx][0], color='black', label='Fault', ls=':')
+            print(
+                f'Fault at t={faults[idx][0]:.2e}, iter={faults[idx][1][1]}, node={faults[idx][1][2]}, space={faults[idx][1][3]}, bit={faults[idx][1][4]}'
+            )
+            ax.set_title(f'Fault in bit {faults[idx][1][4]}')
+
+    ax.legend(frameon=True, loc='lower left')
+    ax.set_xlabel(r'$t$')
+    savefig(fig, f'fault_bit_{bit}')
+
+
+def plot_Lorenz_solution():  # pragma: no cover
+    my_setup_mpl()
+
+    fig, axs = plt.subplots(1, 2, figsize=figsize_by_journal(JOURNAL, 1, 0.4), sharex=True)
+
+    strategy = BaseStrategy()
+    desc = strategy.get_custom_description(run_Lorenz, num_procs=1)
+    stats, controller, _ = run_Lorenz(custom_description=desc, Tend=strategy.get_Tend(run_Lorenz))
+
+    u = get_sorted(stats, recomputed=False, type='u')
+
+    axs[0].plot([me[1][0] for me in u], [me[1][2] for me in u])
+    axs[0].set_ylabel('$z$')
+    axs[0].set_xlabel('$x$')
+
+    axs[1].plot([me[1][0] for me in u], [me[1][1] for me in u])
+    axs[1].set_ylabel('$y$')
+    axs[1].set_xlabel('$x$')
+
+    for ax in axs:
+        ax.set_box_aspect(1.0)
+
+    path = 'data/paper/Lorenz_sol.pdf'
+    fig.savefig(path, bbox_inches='tight', transparent=True, dpi=200)
+
+
 def plot_quench_solution():  # pragma: no cover
     """
     Plot the solution of Quench problem over time
@@ -586,6 +683,12 @@ def work_precision():  # pragma: no cover
     all_problems(**{**all_params, 'work_key': 'param'}, mode='compare_strategies')
 
 
+def plot_recovery_rate_per_acceptance_threshold(problem):  # pragma no cover
+    stats_analyser = get_stats(problem)
+
+    stats_analyser.plot_recovery_thresholds(thresh_range=np.linspace(0.5, 1.5, 1000), recoverable_only=True)
+
+
 def make_plots_for_TIME_X_website():  # pragma: no cover
     global JOURNAL, BASE_PATH
     JOURNAL = 'JSC_beamer'
@@ -636,11 +739,14 @@ def make_plots_for_adaptivity_paper():  # pragma: no cover
 
 
 def make_plots_for_resilience_paper():  # pragma: no cover
-    compare_recovery_rate_problems(target='resilience', num_procs=1, strategy_type='SDC')
+    plot_Lorenz_solution()
+    plot_fault_Lorenz(0)
+    plot_fault_Lorenz(20)
     plot_RBC_solution()
-    plot_recovery_rate(get_stats(run_vdp))
-    plot_fault_vdp(0)
-    plot_fault_vdp(13)
+    compare_recovery_rate_problems(target='resilience', num_procs=1, strategy_type='SDC')
+    # plot_recovery_rate(get_stats(run_Lorenz))
+    # plot_recovery_rate_per_acceptance_threshold(run_Lorenz)
+    plt.show()
 
 
 def make_plots_for_notes():  # pragma: no cover
diff --git a/pySDC/projects/Resilience/strategies.py b/pySDC/projects/Resilience/strategies.py
index 09bcbff62d2da3fa298da20dbb7fc8f95398d9b5..406e63995d14da2822dd6dc2ad10e65b959fda42 100644
--- a/pySDC/projects/Resilience/strategies.py
+++ b/pySDC/projects/Resilience/strategies.py
@@ -127,7 +127,7 @@ class Strategy:
         elif problem.__name__ == "run_quench":
             args['time'] = 41.0
         elif problem.__name__ == "run_Lorenz":
-            args['time'] = 0.3
+            args['time'] = 10
         elif problem.__name__ == "run_AC":
             args['time'] = 1e-2
         elif problem.__name__ == "run_RBC":
@@ -204,7 +204,7 @@ class Strategy:
         elif problem.__name__ == "run_piline":
             return 20.0
         elif problem.__name__ == "run_Lorenz":
-            return 1.5
+            return 20
         elif problem.__name__ == "run_Schroedinger":
             return 1.0
         elif problem.__name__ == "run_quench":
@@ -247,7 +247,7 @@ class Strategy:
 
         elif problem.__name__ == "run_Lorenz":
             custom_description['step_params'] = {'maxiter': 5}
-            custom_description['level_params'] = {'dt': 1e-2}
+            custom_description['level_params'] = {'dt': 1e-3}
             custom_description['problem_params'] = {'stop_at_nan': False}
         elif problem.__name__ == "run_Schroedinger":
             custom_description['step_params'] = {'maxiter': 5}
@@ -293,7 +293,7 @@ class Strategy:
 
         max_runtime = {
             'run_vdp': 1000,
-            'run_Lorenz': 60,
+            'run_Lorenz': 500,
             'run_Schroedinger': 150,
             'run_quench': 150,
             'run_AC': 150,
@@ -445,6 +445,8 @@ class BaseStrategy(Strategy):
         desc = self.get_custom_description(problem, *args, **kwargs)
         if problem.__name__ == "run_quench":
             desc['level_params']['dt'] = 5.0
+        elif problem.__name__ == "run_AC":
+            desc['level_params']['dt'] = 8e-5
         return desc
 
     def get_reference_value(self, problem, key, op, num_procs=1):
@@ -462,9 +464,9 @@ class BaseStrategy(Strategy):
         """
         if problem.__name__ == "run_Lorenz":
             if key == 'work_newton' and op == sum:
-                return 2136
+                return 12350
             elif key == 'e_global_post_run' and op == max:
-                return 9.256926357892326e-06
+                return 1.3527453646133836e-07
 
         super().get_reference_value(problem, key, op, num_procs)
 
@@ -539,7 +541,7 @@ class AdaptivityStrategy(Strategy):
         elif problem.__name__ == "run_vdp":
             e_tol = 2e-5
         elif problem.__name__ == "run_Lorenz":
-            e_tol = 2e-5
+            e_tol = 1e-7
         elif problem.__name__ == "run_Schroedinger":
             e_tol = 4e-7
         elif problem.__name__ == "run_quench":
@@ -592,9 +594,9 @@ class AdaptivityStrategy(Strategy):
         """
         if problem.__name__ == 'run_Lorenz':
             if key == 'work_newton' and op == sum:
-                return 1369
+                return 2989
             elif key == 'e_global_post_run' and op == max:
-                return 9.364841517367495e-06
+                return 5.636767497207984e-08
 
         super().get_reference_value(problem, key, op, num_procs)
 
@@ -606,6 +608,8 @@ class AdaptivityStrategy(Strategy):
         if problem.__name__ == "run_quench":
             desc['level_params']['dt'] = 1.1e1
             desc['convergence_controllers'][Adaptivity]['e_tol'] = 1e-6
+        elif problem.__name__ == "run_AC":
+            desc['convergence_controllers'][Adaptivity]['e_tol'] = 1e-5
         return desc
 
 
@@ -717,7 +721,7 @@ to the strategy'
         """
         if problem.__name__ == "run_Lorenz":
             if key == 'work_newton' and op == sum:
-                return 4758
+                return 5092
             elif key == 'e_global_post_run' and op == max:
                 return 4.107116318152748e-06
 
@@ -822,9 +826,9 @@ strategy'
         """
         if problem.__name__ == "run_Lorenz":
             if key == 'work_newton' and op == sum:
-                return 1872
+                return 9200
             elif key == 'e_global_post_run' and op == max:
-                return 2.2362043480939064e-05
+                return 2.139863344829962e-05
 
         super().get_reference_value(problem, key, op, num_procs)
 
@@ -855,7 +859,7 @@ class kAdaptivityStrategy(IterateStrategy):
         if problem.__name__ == 'run_quench':
             desc['level_params']['dt'] = 5.0
         elif problem.__name__ == 'run_AC':
-            desc['level_params']['dt'] = 0.6 * desc['problem_params']['eps'] ** 2
+            desc['level_params']['dt'] = 5e-4
         elif problem.__name__ == 'run_RBC':
             desc['level_params']['restol'] = 1e-6
         return desc
@@ -875,9 +879,9 @@ class kAdaptivityStrategy(IterateStrategy):
         """
         if problem.__name__ == "run_Lorenz":
             if key == 'work_newton' and op == sum:
-                return 2392
+                return 12350
             elif key == 'e_global_post_run' and op == max:
-                return 4.808610118089973e-06
+                return 1.3527453646133836e-07
 
         super().get_reference_value(problem, key, op, num_procs)
 
@@ -975,7 +979,7 @@ class HotRodStrategy(Strategy):
             'level_params': {},
         }
         if problem.__name__ == "run_AC":
-            custom_description['level_params']['dt'] = 0.8 * base_params['problem_params']['eps'] ** 2 / 8.0
+            custom_description['level_params']['dt'] = 8e-5
         return merge_descriptions(base_params, custom_description)
 
     def get_custom_description_for_faults(self, problem, *args, **kwargs):
@@ -999,9 +1003,9 @@ class HotRodStrategy(Strategy):
         """
         if problem.__name__ == "run_Lorenz":
             if key == 'work_newton' and op == sum:
-                return 2329
+                return 12350
             elif key == 'e_global_post_run' and op == max:
-                return 9.256926357892326e-06
+                return 1.3527453646133836e-07
 
         super().get_reference_value(problem, key, op, num_procs)
 
@@ -1115,9 +1119,9 @@ class AdaptivityCollocationTypeStrategy(AdaptivityCollocationStrategy):
         """
         if problem.__name__ == "run_Lorenz":
             if key == 'work_newton' and op == sum:
-                return 983
+                return 1025
             elif key == 'e_global_post_run' and op == max:
-                return 3.944880392126038e-06
+                return 4.266975256683736e-06
 
         super().get_reference_value(problem, key, op, num_procs)
 
@@ -1154,7 +1158,7 @@ class AdaptivityCollocationRefinementStrategy(AdaptivityCollocationStrategy):
             if key == 'work_newton' and op == sum:
                 return 917
             elif key == 'e_global_post_run' and op == max:
-                return 1.0587702028885815e-05
+                return 1.0874929465387595e-05
 
         super().get_reference_value(problem, key, op, num_procs)
 
@@ -1185,9 +1189,9 @@ class AdaptivityCollocationDerefinementStrategy(AdaptivityCollocationStrategy):
         """
         if problem.__name__ == 'run_Lorenz':
             if key == 'work_newton' and op == sum:
-                return 1358
+                return 1338
             elif key == 'e_global_post_run' and op == max:
-                return 0.00010316526647002888
+                return 0.0001013999955041811
 
         super().get_reference_value(problem, key, op, num_procs)
 
@@ -1268,9 +1272,9 @@ class DIRKStrategy(AdaptivityStrategy):
         """
         if problem.__name__ == "run_Lorenz":
             if key == 'work_newton' and op == sum:
-                return 1456
+                return 5467
             elif key == 'e_global_post_run' and op == max:
-                return 0.00013730538358736055
+                return 7.049480537091313e-07
 
         super().get_reference_value(problem, key, op, num_procs)
 
@@ -1463,9 +1467,9 @@ class ESDIRKStrategy(AdaptivityStrategy):
         """
         if problem.__name__ == "run_Lorenz":
             if key == 'work_newton' and op == sum:
-                return 820
+                return 2963
             elif key == 'e_global_post_run' and op == max:
-                return 3.148061889390874e-06
+                return 4.126039954144289e-09
 
         super().get_reference_value(problem, key, op, num_procs)
 
@@ -1556,7 +1560,7 @@ class ERKStrategy(DIRKStrategy):
             if key == 'work_newton' and op == sum:
                 return 0
             elif key == 'e_global_post_run' and op == max:
-                return 3.5085474063834e-05
+                return 1.509206128957885e-07
 
         super().get_reference_value(problem, key, op, num_procs)
 
@@ -1633,9 +1637,9 @@ class DoubleAdaptivityStrategy(AdaptivityStrategy):
         """
         if problem.__name__ == 'run_Lorenz':
             if key == 'work_newton' and op == sum:
-                return 1369
+                return 2989
             elif key == 'e_global_post_run' and op == max:
-                return 9.364841517367495e-06
+                return 5.636763944494305e-08
 
         super().get_reference_value(problem, key, op, num_procs)
 
@@ -1688,9 +1692,9 @@ class AdaptivityAvoidRestartsStrategy(AdaptivityStrategy):
         """
         if problem.__name__ == "run_Lorenz":
             if key == 'work_newton' and op == sum:
-                return 1369
+                return 2989
             elif key == 'e_global_post_run' and op == max:
-                return 9.364841517367495e-06
+                return 5.636763944494305e-08
 
         super().get_reference_value(problem, key, op, num_procs)
 
@@ -1912,7 +1916,7 @@ class AdaptivityPolynomialError(InexactBaseStrategy):
         elif problem.__name__ == "run_piline":
             e_tol = 1e-7
         elif problem.__name__ == "run_Lorenz":
-            e_tol = 7e-4
+            e_tol = 2e-4
         elif problem.__name__ == "run_Schroedinger":
             e_tol = 3e-5
         elif problem.__name__ == "run_quench":
@@ -2007,9 +2011,9 @@ class AdaptivityPolynomialError(InexactBaseStrategy):
         """
         if problem.__name__ == "run_Lorenz":
             if key == 'work_newton' and op == sum:
-                return 2124
+                return 2123
             elif key == 'e_global_post_run' and op == max:
-                return 8.484321512014503e-08
+                return 7.931560830343187e-08
 
         super().get_reference_value(problem, key, op, num_procs)
 
diff --git a/pySDC/projects/Resilience/tests/test_fault_injection.py b/pySDC/projects/Resilience/tests/test_fault_injection.py
index c44ea38307a2834c8c9eac667bc5429f63d43d78..d23b5eccfc3cfd9a038e5b4610e6372a81fe12ed 100644
--- a/pySDC/projects/Resilience/tests/test_fault_injection.py
+++ b/pySDC/projects/Resilience/tests/test_fault_injection.py
@@ -153,29 +153,29 @@ def test_fault_injection():
 
 @pytest.mark.mpi4py
 @pytest.mark.slow
-@pytest.mark.parametrize("numprocs", [5])
-def test_fault_stats(numprocs):
+@pytest.mark.parametrize('strategy_name', ['adaptivity'])
+def test_fault_stats(strategy_name):
     """
     Test generation of fault statistics and their recovery rates
     """
     import numpy as np
+    from pySDC.projects.Resilience.strategies import (
+        BaseStrategy,
+        AdaptivityStrategy,
+        kAdaptivityStrategy,
+        HotRodStrategy,
+    )
 
-    # Set python path once
-    my_env = os.environ.copy()
-    my_env['PYTHONPATH'] = '../../..:.'
-    my_env['COVERAGE_PROCESS_START'] = 'pyproject.toml'
-
-    cmd = f"mpirun -np {numprocs} python {__file__} --test-fault-stats".split()
+    strategies = {
+        'base': BaseStrategy,
+        'adaptivity': AdaptivityStrategy,
+        'kAdaptivity': kAdaptivityStrategy,
+        'HotRod': HotRodStrategy,
+    }
 
-    p = subprocess.Popen(cmd, env=my_env, cwd=".")
+    strategy = strategies[strategy_name]()
 
-    p.wait()
-    assert p.returncode == 0, 'ERROR: did not get return code 0, got %s with %2i processes' % (
-        p.returncode,
-        numprocs,
-    )
-
-    stats = generate_stats(True)
+    stats = generate_stats(strategy, True)
 
     # test number of possible combinations for faults
     expected_max_combinations = 3840
@@ -184,35 +184,34 @@ def test_fault_stats(numprocs):
     ), f"Expected {expected_max_combinations} possible combinations for faults in van der Pol problem, but got {stats.get_max_combinations()}!"
 
     recovered_reference = {
-        'base': 1,
-        'adaptivity': 2,
+        'base': 0,
+        'adaptivity': 1,
         'iterate': 1,
-        'Hot Rod': 2,
+        'Hot Rod': 1,
         'adaptivity_coll': 0,
         'double_adaptivity': 0,
     }
     stats.get_recovered()
 
-    for strategy in stats.strategies:
-        dat = stats.load(strategy=strategy, faults=True)
-        fixable_mask = stats.get_fixable_faults_only(strategy)
-        recovered_mask = stats.get_mask(strategy=strategy, key='recovered', op='eq', val=True)
-        index = stats.get_index(mask=fixable_mask)
+    dat = stats.load(strategy=strategy, faults=True)
+    fixable_mask = stats.get_fixable_faults_only(strategy)
+    recovered_mask = stats.get_mask(strategy=strategy, key='recovered', op='eq', val=True)
+    index = stats.get_index(mask=fixable_mask)
 
-        assert all(fixable_mask[:-1] == [False, True, False]), "Error in generating mask of fixable faults"
-        assert all(index == [1, 3]), "Error when converting to  index"
+    assert all(fixable_mask == [False, True]), "Error in generating mask of fixable faults"
+    assert all(index == [1]), "Error when converting to  index"
 
-        combinations = np.array(stats.get_combination_counts(dat, keys=['bit'], mask=fixable_mask))
-        assert all(combinations == [1.0, 1.0]), "Error when counting combinations"
+    combinations = np.array(stats.get_combination_counts(dat, keys=['bit'], mask=fixable_mask))
+    assert all(combinations == [1.0, 1.0]), "Error when counting combinations"
 
-        recovered = len(dat['recovered'][recovered_mask])
-        crashed = len(dat['error'][dat['error'] == np.inf])  # on some systems the last run crashes...
-        assert (
-            recovered >= recovered_reference[strategy.name] - crashed
-        ), f'Expected {recovered_reference[strategy.name]} recovered faults, but got {recovered} recovered faults in {strategy.name} strategy!'
+    recovered = len(dat['recovered'][recovered_mask])
+    crashed = len(dat['error'][dat['error'] == np.inf])  # on some systems the last run crashes...
+    assert (
+        recovered >= recovered_reference[strategy.name] - crashed
+    ), f'Expected {recovered_reference[strategy.name]} recovered faults, but got {recovered} recovered faults in {strategy.name} strategy!'
 
 
-def generate_stats(load=False):
+def generate_stats(strategy, load=False):
     """
     Generate stats to check the recovery rate
 
@@ -222,12 +221,6 @@ def generate_stats(load=False):
     Returns:
         Object containing the stats
     """
-    from pySDC.projects.Resilience.strategies import (
-        BaseStrategy,
-        AdaptivityStrategy,
-        IterateStrategy,
-        HotRodStrategy,
-    )
     from pySDC.projects.Resilience.fault_stats import (
         FaultStats,
     )
@@ -242,15 +235,10 @@ def generate_stats(load=False):
         recovery_thresh=1.1,
         num_procs=1,
         mode='random',
-        strategies=[
-            BaseStrategy(),
-            AdaptivityStrategy(),
-            IterateStrategy(),
-            HotRodStrategy(),
-        ],
+        strategies=[strategy],
         stats_path='data',
     )
-    stats.run_stats_generation(runs=4, step=2)
+    stats.run_stats_generation(runs=2, step=1)
     return stats
 
 
diff --git a/pySDC/projects/Resilience/tests/test_strategies.py b/pySDC/projects/Resilience/tests/test_strategies.py
index 7e9b0e71a273eb64d7fe4083235cde9e2a043c51..b218fc162a975d5ae4bfe25c22743c1747c20fcf 100644
--- a/pySDC/projects/Resilience/tests/test_strategies.py
+++ b/pySDC/projects/Resilience/tests/test_strategies.py
@@ -17,7 +17,7 @@ STRATEGY_NAMES = [
     'AdaptivityPolynomialError',
     'kAdaptivity',
 ]
-STRATEGY_NAMES_NONMPIONLY = ['adaptiveHR', 'HotRod']
+STRATEGY_NAMES_NONMPIONLY = ['HotRod']
 STRATEGY_NAMES_MPIONLY = ['ARK']
 LOGGER_LEVEL = 30
 
@@ -81,6 +81,7 @@ def single_test(strategy_name, useMPI, num_procs):
         use_MPI=useMPI,
         custom_controller_params=controller_params,
         comm=comm,
+        Tend=1.0,
     )
 
     # things we want to test