
03.06.2024 Instructors: Alina Bazarova, Oleg Filatov

Lecture 1. Normalizing flows
Introduction to Bayesian Statistical Learning II

Brief recall on the Bayesian concepts

posterior =
prior × likelihood

evidence

P(A |X) =
P(A)P(X |A)

P(X) Where A are the parameters and X is the data (discrete case)

p(θ |x) =
p(θ)p(x |θ)

∫ p(x)p(x |θ)dθ

Where are the parameters, and p(x) is a is a probability

density function (continuous case)

θ

Generative models

GAN: generator and discriminator trained together

No likelihood estimate

VAE: implicitly learns the distribution of the data

Latent space has a lower than input dimension

Normalizing flows: learns exact likelihood estimate, uses

A chain of invertible functions. Latent space has the same

dimension as input

What do normalizing flows have to do with Bayesian inference?

- Normalizing flows are capable of learning exact likelihood estimate,

and therefore can be a powerful tool in approximate Bayesian methods such as

Simulation Based Inference, especially in cases when likelihood is intractable

What do normalizing flows have to do with Bayesian inference?

- Normalizing flows are capable of learning exact likelihood estimate,

and therefore can be a powerful tool in approximate Bayesian methods such as

Simulation Based Inference, especially in cases when likelihood is intractable

- Normalizing flows represent a series of transformations of an initial simple

distribution - can be viewed as our prior beliefs on the posterior distribution

More concrete…

Main idea: We wish to map simple distributions which are easy to sample from and
evaluate densities to complex ones (which are learned via data)

Change of variables
Let Z and X be random variables, such that ,

where

X = f(Z), Z = f −1(X)

f : ℝn → ℝn pX(x) = pZ(f −1(x)) |det(
∂f −1(x)

∂x
) |then holds.

More concrete…

Main idea: We wish to map simple distributions with easy to sample and evaluate
densities to complex ones (which are learned via data)

Change of variables

Let Z and X be random variables, such that ,

where

X = f(Z), Z = f −1(X)

f : ℝn → ℝn pX(x) = pZ(f −1(x)) |det(
∂f −1(x)

∂x
) |then holds.

- x and z are continuous and of the same dimension

- is a Jacobian n x n matrix, where each (i, j) entry is
∂f −1(x)

∂x
∂f −1(x)i

∂xj

Normalizing flow models

Latent variables Z and observed variables X, is a mapping between X

and Z, which is deterministic and invertible.

fθ : ℝn → ℝn

Normalizing flow models

Latent variables Z and observed variables X, is a mapping between X

and Z, which is deterministic and invertible.

fθ : ℝn → ℝn

Using change of variables, the marginal likelihood p(x) is given by

pX(x; θ) = pZ(f −1
θ (x)) |det(

∂f −1
θ (x)
∂x

) |

Key requirements:

1. is invertible

2. x and z have the same dimension

3. Jacobian computation has to be efficient

fθ

Normalizing flow models. Examples

Planar flow

x = fθ(z) = z + u h(wTz + b) , where u, w, b are trainable parameters

|det(
∂fθ(z)

∂z
) | = |1 + h'(wTz + b)uTw | NB: h'(wTz + b)uTw ≥ − 1, h is invertible

Figure credit Eric Jang https://blog.evjang.com/2018/01/nf1.html

<— Illustration: affine shift

Transforming U[0,1] distribution using

NB: we are dealing with probability density functions,

hence the transformed volume has to integrate to 1!

f(x) = 2x + 1

pX(x) = pZ(f −1(x)) |det(
∂f −1(x)

∂x
) |

Normalizing flow models. Examples

Nonlinear Independent Components Estimation (NICE)
Partitions x into two disjoint subsets and

Forward mapping: , where the first one is an identity mapping,

and is a neural network

Reverse mapping:

The Jacobian of the forward mapping is lower-triangular, determinant is equal to 1 (volume
preserving transform).

x1 x2

z1 = x1, z2 = x2 + mθ(x1)

mθ

x1 = z1, x2 = z2 − mθ(x1)

Normalizing flow models. Examples

Nonlinear Independent Components Estimation (NICE)
Partitions x into two disjoint subsets and

Forward mapping: , where the first one is an identity mapping,

and is a neural network

Reverse mapping:

The Jacobian of the forward mapping is lower-triangular, determinant is equal to 1 (volume
preserving transform).

x1 x2

z1 = x1, z2 = x2 + mθ(x1)

mθ

x1 = z1, x2 = z2 − mθ(x1)

Real Non-Volume Preserving (RealNVP)

z2 = exp(sθ(x1)) ⊙ x2 + mθ(x1) Will look closer in the jupyter notebook!
Jacobian is a product of the scaling factors!

Normalizing flow models. Examples

Masked Autoregressive Flow (MAF)

p(x) = ∏
i

p(xi |x1:i−1)
Target density is modelled as a product of one-dimensional

densities, depending only on the previous values

Normalizing flow models. Examples

Masked Autoregressive Flow (MAF)

p(x) = ∏
i

p(xi |x1:i−1)
Target density is modelled as a product of one-dimensional

densities, depending only on the previous values

p(xi |x1:i−1) = 𝒩(xi |mi,θ, (exp si,θ)2), mi,θ = mi,θ(x1:i−1), si,θ = si,θ(x1:i−1)

Normalizing flow models. Examples

Masked Autoregressive Flow (MAF)

p(x) = ∏
i

p(xi |x1:i−1)
Target density is modelled as a product of one-dimensional

densities, depending only on the previous values

p(xi |x1:i−1) = 𝒩(xi |mi,θ, (exp si,θ)2), mi,θ = mi,θ(x1:i−1), si,θ = si,θ(x1:i−1)

, where and are neural networksmi,θ si,θxi = zi exp si,θ + mi,θ, zi ∼ 𝒩(0,1)

Normalizing flow models. Examples

Masked Autoregressive Flow (MAF)

p(x) = ∏
i

p(xi |x1:i−1)
Target density is modelled as a product of one-dimensional

densities, depending only on the previous values

p(xi |x1:i−1) = 𝒩(xi |mi,θ, (exp si,θ)2), mi,θ = mi,θ(x1:i−1), si,θ = si,θ(x1:i−1)

, where and are neural networksmi,θ si,θxi = zi exp si,θ + mi,θ, zi ∼ 𝒩(0,1)

Inverse: —> no need to compute and zi = (xi − mi,θ)/exp si m−1
i,θ s−1

i,θ

Normalizing flow models. Examples

Masked Autoregressive Flow (MAF)

p(x) = ∏
i

p(xi |x1:i−1)
Target density is modelled as a product of one-dimensional

densities, depending only on the previous values

p(xi |x1:i−1) = 𝒩(xi |mi,θ, (exp si,θ)2), mi,θ = mi,θ(x1:i−1), si,θ = si,θ(x1:i−1)

, where and are neural networksmi,θ si,θxi = zi exp si,θ + mi,θ, zi ∼ 𝒩(0,1)

Inverse: —> no need to compute and zi = (xi − mi,θ)/exp si m−1
i,θ s−1

i,θ

The generation procedure is slow, since for we need to compute all the previous xi x1:i−1

Normalizing flow models. Examples

Masked Autoregressive Flow (MAF)

p(x) = ∏
i

p(xi |x1:i−1)
Target density is modelled as a product of one-dimensional

densities, depending only on the previous values

p(xi |x1:i−1) = 𝒩(xi |mi,θ, (exp si,θ)2), mi,θ = mi,θ(x1:i−1), si,θ = si,θ(x1:i−1)

, where and are neural networksmi,θ si,θxi = zi exp si,θ + mi,θ, zi ∼ 𝒩(0,1)

Inverse: —> no need to compute and zi = (xi − mi,θ)/exp si,θ m−1
i,θ s−1

i,θ

The generation procedure is slow, since for we need to compute all the previous xi x1:i−1

However, once is computed, the density estimation can be significantly speeded up with MADE!x

Normalizing flow models. Examples

Masked Autoencoder for Distribution Estimation (MADE): allows to speed up MAF!

All conditional likelihoods are estimated in a single pass of D threadsp(x1), p(x2 |x1), …, p(xD |x1:D−1)

Image source https://arxiv.org/abs/1502.03509

Normalizing flow models. Examples

Masked Autoencoder for Distribution Estimation (MADE): allows to speed up MAF!

All conditional likelihoods are estimated in a single pass of D threadsp(x1), p(x2 |x1), …, p(xD |x1:D−1)

Image source https://arxiv.org/abs/1502.03509

MADE masks out connections in the network

Each hidden node is assigned with a random

“connectivity integer” , which determines the mask

Normalizing flow models. Examples

Masked Autoencoder for Distribution Estimation (MADE): allows to speed up MAF!

All conditional likelihoods are estimated in a single pass of D threadsp(x1), p(x2 |x1), …, p(xD |x1:D−1)

Image source https://arxiv.org/abs/1502.03509

MADE masks out connections in the network

Each hidden node is assigned with a random

“connectivity integer” , which determines the mask

- Order agnostic (shuffle input dimensions)

- Connectivity agnostic (resample connectivity integers)

Normalizing flow models. Examples

Inverse Autoregressive Flow (IAF)

MAF transformation xi = zi exp si,θ + mi,θ, zi ∼ 𝒩(0,1)

Inverse where and depend only on zi =
1

exp si,θ
xi −

mi,θ

exp si,θ
mi,θ si,θ x1:i−1

 depends on xi x1:i−1

Normalizing flow models. Examples

Inverse Autoregressive Flow (IAF)

m̃i,θ = m̃i,θ(z̃1:i−1), s̃i,θ = s̃i,θ(z̃1:i−1)

MAF transformation xi = zi exp si,θ + mi,θ, zi ∼ 𝒩(0,1)

Inverse where and depend only on zi =
1

exp si,θ
xi −

mi,θ

exp si,θ
mi,θ si,θ x1:i−1

IAF: , where x̃i = z̃i exp s̃i,θ + m̃i,θ

Normalizing flow models. Examples

Inverse Autoregressive Flow (IAF)

m̃i,θ = m̃i,θ(z̃1:i−1), s̃i,θ = s̃i,θ(z̃1:i−1)

MAF transformation xi = zi exp si,θ + mi,θ, zi ∼ 𝒩(0,1)

Inverse where and depend only on zi =
1

exp si,θ
xi −

mi,θ

exp si,θ
mi,θ si,θ x1:i−1

IAF: , where x̃i = z̃i exp s̃i,θ + m̃i,θ

Data generation: fast with MADE!

Density estimation: slow, as requires computation of since z̃1:i−1 x̃i ∼ p(x̃i | z̃1:i−1)

Training Normalising flows

In reality we apply a chain of transformations to the prior density f1, …fK p(z)

Loss <—negative log-likelihood: −log pz(f −1
1 ∘ f −1

2 ∘ … ∘ f −1
K (x)) − ∑

i

log det |
df −1

i (zi)
dzi

|

With respect to function (bijector) parameters

Dequantization

- Normalizing flows operate on continuous distributions

- Most of the data we work with have discrete nature

- Hence dequantization: converting discrete data into continuous by adding small amount of noise

Dequantization

- Normalizing flows operate on continuous distributions

- Most of the data we work with have discrete nature

- Hence dequantization: converting discrete data into continuous by adding small amount of noise

1. , where x is the original discrete input
v = x + u, u ∼ U[0,1]

p(x) = ∫ p(x + u)du =

Dequantization

- Normalizing flows operate on continuous distributions

- Most of the data we work with have discrete nature

- Hence dequantization: converting discrete data into continuous by adding small amount of noise

1. , where x is the original discrete input
v = x + u, u ∼ U[0,1]

p(x) = ∫ p(x + u)du = ∫
q(u |x)
q(u |x)

p(x + u)du =

Dequantization

- Normalizing flows operate on continuous distributions

- Most of the data we work with have discrete nature

- Hence dequantization: converting discrete data into continuous by adding small amount of noise

1. , where x is the original discrete input
v = x + u, u ∼ U[0,1]

p(x) = ∫ p(x + u)du = ∫
q(u |x)
q(u |x)

p(x + u)du = Eu∼q(u|x)
p(x + u)
q(u |x)

=

Dequantization

- Normalizing flows operate on continuous distributions

- Most of the data we work with have discrete nature

- Hence dequantization: converting discrete data into continuous by adding small amount of noise

1. , where x is the original discrete input
v = x + u, u ∼ U[0,1]

p(x) = ∫ p(x + u)du = ∫
q(u |x)
q(u |x)

p(x + u)du = Eu∼q(u|x)
p(x + u)
q(u |x)

= Eu∼U[0,1]d p(x + u)

Problems: uniform distribution has sharp boarders —> difficult to convert to normal

Dequantization

- Normalizing flows operate on continuous distributions

- Most of the data we work with have discrete nature

- Hence dequantization: converting discrete data into continuous by adding small amount of noise

1. , where x is the original discrete input
v = x + u, u ∼ U[0,1]

p(x) = ∫ p(x + u)du = ∫
q(u |x)
q(u |x)

p(x + u)du = Eu∼q(u|x)
p(x + u)
q(u |x)

= Eu∼U[0,1]d p(x + u)

Problems: uniform distribution has sharp boarders —> difficult to convert to normal

2. Solution: Variational dequantization. In the above formula use learnable distribution ,

modelled via an additional normalizing flow

Jupyter notebook

qθ(u |x)

