Lecture 1. Normalizing flows

Introduction to Bayesian Statistical Learning I

20.05.2025 Instructors: Alina Bazarova, Jose Robledo

Brief recall on the Bayesian concepts

| prior X likelihood
posterioyr = ———————
evidence
P(A)P(X|A) . .
PA|X) = POX) Where 4 are the parameters and X is the data (discrete case)

p(Op(x|0) Where 0 are the parameters, and p(x) is a is a probability
p(0]x) =

| p()p(x|0)dé density function (continuous case)

Generative models

GAN: generator and discriminator trained together

Generator

Input Discriminator

X -0/1

G(2) No likelihood estimate

input A Output VAE: implicitly learns the distribution of the data
X q(z|X) -z | 8 p(X|[2) » X
Latent space has a lower than input dimension
Normalizing flows: learns exact likelihood estimate, uses

M»ou}m A chain of invertible functions. Latent space has the same
dimension as input

Input

What do normalizing flows have to do with Bayesian inference?

- Normalizing flows are capable of learning exact likelihood estimate,
and therefore can be a powerful tool in approximate Bayesian methods such as

Simulation Based Inference, especially in cases when likelihood is intractable

What do normalizing flows have to do with Bayesian inference?

- Normalizing flows are capable of learning exact likelihood estimate,
and therefore can be a powerful tool in approximate Bayesian methods such as

Simulation Based Inference, especially in cases when likelihood is intractable

- Normalizing flows represent a series of transformations of an initial simple

distribution - can be viewed as our prior beliefs on the posterior distribution

More concrete...

Main idea: We wish to map simple distributions which are easy to sample from and
evaluate densities to complex ones (which are learned via data)

Change of variables

Let Z and X be random variables, such that X = (Z), Z = f~(X),
of ~'(x)
0x

)| holds.

where f : R" - R" then px(x) = Pz(f_l(x)) | det(

More concrete...

Main idea: We wish to map simple distributions with easy to sample and evaluate
densities to complex ones (which are learned via data)

Change of variables

Let Z and X be random variables, such that X = A(Z), Z = f~(X),
of ~'(x)
ox

)| holds.

where f : R" — R" then px(x) =Pz(f_1(x))\d€t(
- x and z are continuous and of the same dimension

0 —1 X 0 _1(X)-
u IS a Jacobian n x n matrix, where each (i, j) entry Is L

B ox 6xj

Normalizing flow models

Latent variables Z and observed variables X, f,: R" - R" Is a mapping between X

and Z, which is deterministic and invertible.

Normalizing flow models

Latent variables Z and observed variables X, f,: R" - R" Is a mapping between X

and Z, which is deterministic and invertible.

Using change of variables, the marginal likelihood p(x) is given by

0 —1
Px(x;0) = p(fy' (x)) | dex(feax(X)) |

Key requirements:

1. fyisinvertible

2. x and z have the same dimension

3. Jacobian computation has to be efficient

Normalizing flow models. Examples

Planar flow

x =f)z) = z+uh(w'z+Db) , where u, w, b are trainable parameters

0fy(Z
| det(fg())\ =|1+h'WwW/ z+bulw| NB:h'Wwliz+bu'w>—1 hisinvertible
Z
1
e <— lllustration: affine shift .(x) = (/') | det(Z . SN
5 | X

Transforming U[0,1] distribution using f(x) = 2x + 1

NB: we are dealing with probability density functions,

hence the transformed volume has to integrate to 1!

Normalizing flow models. Examples

Nonlinear Independent Components Estimation (NICE)
Partitions x into two disjoint subsets x; and X,

Forward mapping: z; = Xy, 2, = X, + my(x;), where the first one is an identity mapping,
and my is a neural network

Reverse mapping: x; = zy, X, = Zp — My(x;)

The Jacobian of the forward mapping is lower-triangular, determinant is equal to 1 (volume
preserving transform).

Normalizing flow models. Examples

Nonlinear Independent Components Estimation (NICE)
Partitions x into two disjoint subsets x; and X,

Forward mapping: z; = Xy, 2, = X, + my(x;), where the first one is an identity mapping,
and my is a neural network

Reverse mapping: x; = zy, X, = Zp — My(x;)

The Jacobian of the forward mapping is lower-triangular, determinant is equal to 1 (volume
preserving transform).

Real Non-Volume Preserving (RealNVP)

Zp = exp(se(x1)) © x5 + my(x;) Will look closer in the jupyter notebook!

Jacobian is a product of the scaling factors!

Normalizing flow models. Examples

Masked Autoregressive Flow (MAF)

Target density iIs modelled as a product of one-dimensional
IOES | EEAE T e Y P

l densities, depending only on the previous values

Normalizing flow models. Examples

Masked Autoregressive Flow (MAF)

Target density iIs modelled as a product of one-dimensional
IOES | EEAE T e Y P

l densities, depending only on the previous values

px; | xy.;_1) = V(x| m 0 (exp s; 9)2) m; g = ze(xlz s Sig = z,e(xlzi—l)

Normalizing flow models. Examples

Masked Autoregressive Flow (MAF)
Target density Is modelled as a product of one-dimensional
px) = HP(X ‘xu 1) J Y P

l densities, depending only on the previous values

px; | xp.;_) = V(x| m 0 (exp s; 9)2) m; g = zH(xlz s Sig = 1,9(x1:i—1)

X; = z;€Xps; g+ m; g, z; ~ N(0,1), where m; g and s; 4 are neural networks

Normalizing flow models. Examples

Masked Autoregressive Flow (MAF)
Target density Is modelled as a product of one-dimensional
IOES | EEAE T e Y P

l densities, depending only on the previous values

2
P | xy,1) = V(x| my g, (€XP 8;9)°), My g = 1; o(X1_1)s S 9 = S; o(X1:i-1)
X; = z;€Xps; g+ m; g, z; ~ N(0,1), where m; g and s; 4 are neural networks

e — (. — ~1 -1
Inverse: z; = (x; — m; g)/exps; —> no need to compute m, , and s, ,

Normalizing flow models. Examples

Masked Autoregressive Flow (MAF)

Target density iIs modelled as a product of one-dimensional
IOES | EEAE T e Y P

l densities, depending only on the previous values

2
px; | xp.;_1) = V(x| m; g (exp Si,é’)), m; g = mi,e(xlzi—l)» Si0 = Si,H(xlzi—l)

X; = z;€Xps; g+ m; g, z; ~ N(0,1), where m; g and s; 4 are neural networks

A ~1 -1
Inverse: z; = (x; — m; g)/exps; —> no need to compute m, , and s, ,

The generation procedure is slow, since for x; we need to compute all the previous X;.;_;

Normalizing flow models. Examples

Masked Autoregressive Flow (MAF)

Target density iIs modelled as a product of one-dimensional
IOES | EEAE T e Y P

l densities, depending only on the previous values

2
px; | xp.;_1) = V(x| m; g (exp Si,H)), m; g = mi,e(xlzi—l)» Si0 = Si,e(xlzi—l)

X; = z;€Xps; g+ m; g, z; ~ N(0,1), where m; g and s; 4 are neural networks

o — (x — ~1 -1
Inverse: z; = (x; — m; g)/exps;y —>no need to compute m, , and s; ,

The generation procedure is slow, since for x; we need to compute all the previous X;.;_;

However, once x is computed, the density estimation can be significantly speeded up with MADE!

Normalizing flow models. Examples

Masked Autoencoder for Distribution Estimation (MADE): allows to speed up MAF!

All conditional likelihoods p(x;), p(x, | x), ..., p(Xp | X;.p_) are estimated in a single pass of D threads

p(x1|xe, x3) p(zs) plasg|es)
T

QOO 01016
vIOORKA "

©10) é\@
COLED w g”(;CD
@%
OO

Autoencoder x Masks — MADE

Image source https://arxiv.org/abs/1502.03509

Normalizing flow models. Examples

Masked Autoencoder for Distribution Estimation (MADE): allows to speed up MAF!

All conditional likelihoods p(x;), p(x, | x), ..., p(Xp | X;.p_) are estimated in a single pass of D threads

p(xi|xo,x3) plxs) plas|es) . .
MADE masks out connections in the network

Z1

To T3 F. 0 A
OO0 OO

\% ‘Q"’"@ ': MY Each hidden node is assigned with a random
790 4% \\
D em OQRO

, PN AL w / “connectivity integer” , which determines the mask
W "4&&’4‘\ | =M /
/4""~\ N
90100 .@
Wl% I .:MW1 g
L1 L9 I3 L1 L9 I3
Autoencoder x Masks —— MADE

Image source https://arxiv.org/abs/1502.03509

Normalizing flow models. Examples

Masked Autoencoder for Distribution Estimation (MADE): allows to speed up MAF!

All conditional likelihoods p(x;), p(x, | x), ..., p(Xp | X;.p_) are estimated in a single pass of D threads

p(xi|xo,x3) plxs) plas|es)

"@ C:D é MADE masks out connections in the network

Z1

Q00 @
v /Q"'Q“'Q\ ", @é o Each hidden node is assigned with a random

W /‘/ >§}§ “connectivity integer” , which determines the mask

Wl% I R AN 2 ;‘ - Order agnostic (shuffle input dimensions)
@ @ - Connectivity agnostic (resample connectivity integers)
X1 o I3 X1 o L3
Autoencoder x Masks —— MADE

Image source https://arxiv.org/abs/1502.03509

Normalizing flow models. Examples

Inverse Autoregressive Flow (IAF)

MAF transformation %; = Z;€Xp 89+ m; g, 7; ~ HV(0,1) x. depends on x;.;_,

1 m; g
Inverse z; = X; — where m; o and s; , depend only on x;.._4
EXP S; g EXP S; o ’ ’

Normalizing flow models. Examples

Inverse Autoregressive Flow (IAF)

MAF transformation X; = Z;€Xp S; g9+ M; 9, Z; ~ A(0,1)

1 m; g
Inverse z; = X; — where m; o and s; , depend only on x;.._4
EXP S; g EXP S; o ’ ’

IAF: X; = Z;€Xp §; g + m; g, Where Mm; 9= mM; o(Z1.,_1)> S; 9 = 5; o(Z1.i_1)

Normalizing flow models. Examples

Inverse Autoregressive Flow (IAF)

MAF transformation X; = Z;€Xp S; g9+ M; 9, Z; ~ A(0,1)

1 m; g
Inverse z; = X; — where m, o and s; o depend only on xy.;_;
CXP Si,@ CXP Si,@

Data generation: fast with MADE!

Density estimation: slow, as requires computation of Z;.._; since X; ~ p(X;|Z;.._)

Training Normalising flows

In reality we apply a chain of transformations f, ...fx to the prior density p(z)

f1 f2 fx
=) =) =)

Zy ~ Po(2p) z1 ~ p1(Z1) zg ~ pk(2k)
Zgy = X

d —1 7.
L oss <—negative log-likelihood: —log p.(fi ! o f5 o ... o f!(x)) — 2 log det | i (@) |

dZi

With respect to function (bijector) parameters

Deqguantization

- Normalizing flows operate on continuous distributions
- Most of the data we work with have discrete nature

- Hence dequantization: converting discrete data into continuous by adding small amount of noise

Deqguantization

- Normalizing flows operate on continuous distributions
- Most of the data we work with have discrete nature

- Hence dequantization: converting discrete data into continuous by adding small amount of noise

1. v=x+4u, u ~ U|[0,1], where x is the original discrete input

p(x) = Jp(x +u)du =

Deqguantization

- Normalizing flows operate on continuous distributions
- Most of the data we work with have discrete nature
- Hence dequantization: converting discrete data into continuous by adding small amount of noise

1. v=x+u, u ~ U|[0,1], where x is the original discrete input

p(x) = J' p(x + u)du = J q(u]) p(x + u)du =
q(u | x)

Deqguantization

- Normalizing flows operate on continuous distributions
- Most of the data we work with have discrete nature
- Hence dequantization: converting discrete data into continuous by adding small amount of noise

1. v=x+u, u ~ U|[0,1], where x is the original discrete input

q(u | x) p(x + u)
pe) = J pur+du = J q(u|x) pex+ it = Eygiup gulx)

Deqguantization

- Normalizing flows operate on continuous distributions
- Most of the data we work with have discrete nature
- Hence dequantization: converting discrete data into continuous by adding small amount of noise

1. v=x+u, u ~ U|[0,1], where x is the original discrete input

g(u|x) p(x + u)
px) = Jp(x + u)du = J 1) px+wdu=E,_ 2| %) = L, yj0,11eP(x + 1)

Problems: uniform distribution has sharp boarders —> difficult to convert to normal

Deqguantization

- Normalizing flows operate on continuous distributions
- Most of the data we work with have discrete nature

- Hence dequantization: converting discrete data into continuous by adding small amount of noise
1. v=x+u, u ~ U|[0,1], where x is the original discrete input

q(u|x) px + u)

px) = Jp(x + u)du = J 1) px+wdu=E,_ 2| %) = L, yj0,11eP(x + 1)

Problems: uniform distribution has sharp boarders —> difficult to convert to normal

2. Solution: Variational dequantization. In the above formula use learnable distribution g,(u | x),

modelled via an additional normalizing flow

Jupyter notebook

