diff --git a/BLcourse2.2/Generating_MNIST_using_DDPMs.ipynb b/BLcourse2.2/Generating_MNIST_using_DDPMs.ipynb index ec330d6b19d86957d92f0f176905cb34e21ccdb3..aeccccdc28f1ae6456a03270d2765a9e743c1b5f 100644 --- a/BLcourse2.2/Generating_MNIST_using_DDPMs.ipynb +++ b/BLcourse2.2/Generating_MNIST_using_DDPMs.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 2, + "execution_count": 1, "metadata": { "ExecuteTime": { "end_time": "2023-02-23T07:34:53.034694Z", @@ -47,6 +47,8 @@ "source": [ "# UNet Model\n", "\n", + "Materials are taken from https://learnopencv.com/denoising-diffusion-probabilistic-models/ and https://github.com/spmallick/learnopencv/blob/master/Guide-to-training-DDPMs-from-Scratch/Generating_MNIST_using_DDPMs.ipynb\n", + "\n", "In DDPMs, the authors use a UNet-shaped deep neural network which takes in as input:\n", "\n", "1. The input image at any stage of the reverse process.\n", @@ -2009,9 +2011,9 @@ ], "metadata": { "kernelspec": { - "display_name": "sc_venv_template", + "display_name": "sc_venv_bayes2", "language": "python", - "name": "sc_venv_template" + "name": "python3" }, "language_info": { "codemirror_mode": {