diff --git a/experiments/utils.py b/experiments/utils.py deleted file mode 100644 index 785cf6d685fc6e42c121e6e12fea2144498d26bc..0000000000000000000000000000000000000000 --- a/experiments/utils.py +++ /dev/null @@ -1,151 +0,0 @@ -# Created by Dennis Willsch (d.willsch@fz-juelich.de) -# Modified by Gabriele Cavallaro (g.cavallaro@fz-juelich.de) -# and Madita Willsch (m.willsch@fz-juelich.de) - -import sys -import re -import json -import os -import numpy as np -import matplotlib.pyplot as plt -import matplotlib.colors as cols -from sklearn.metrics import roc_auc_score,average_precision_score,precision_recall_curve,roc_curve,accuracy_score,auc - -np.set_printoptions(precision=4, suppress=True) - -def kernel(xn, xm, gamma=-1): # here (xn.shape: NxD, xm.shape: ...xD) -> Nx... - if gamma == -1: - return xn @ xm.T - xn = np.atleast_2d(xn) - xm = np.atleast_2d(xm) - return np.exp(-gamma * np.sum((xn[:,None] - xm[None,:])**2, axis=-1)) # (N,1,D) - (1,...,D) -> (N,...,D) -> (N,...); see Hsu guide.pdf for formula - -# B = base -# K = number of qubits per alpha -# E = shift of exponent -# decode binary -> alpha -def decode(binary, B=10, K=3, E=0): - N = len(binary) // K - Bvec = float(B) ** (np.arange(K)-E) - return np.fromiter(binary,float).reshape(N,K) @ Bvec - -# encode alpha -> binary with B and K (for each n, the binary coefficients an,k such that sum_k an,k B**k is closest to alphan) -def encode(alphas, B=10, K=3, E=0): # E allows for encodings with floating point numbers (limited precision of course) - N = len(alphas) - Bvec = float(B) ** (np.arange(K)-E) # B^(0-E) B^(1-E) B^(2-E) ... B^(K-1-E) - allvals = np.array(list(map(lambda n : np.fromiter(bin(n)[2:].zfill(K),float,K), range(2**K)))) @ Bvec # [[0,0,0],[0,0,1],...] @ [1, 10, 100] - return ''.join(list(map(lambda n : bin(n)[2:].zfill(K),np.argmin(np.abs(allvals[:,None] - alphas), axis=0)))) - -def encode_as_vec(alphas, B=10, K=3, E=0): - return np.fromiter(encode(alphas,B,K,E), float) - -def loaddataset(datakey): - dataset = np.loadtxt(datakey, dtype=float, skiprows=1) - return dataset[:,2:], dataset[:,1] # data, labels - -def save_json(filename, var): - with open(filename,'w') as f: - f.write(str(json.dumps(var, indent=4, sort_keys=True, separators=(',', ': '), ensure_ascii=False))) - -def eval_classifier(x, alphas, data, label, gamma, b=0): # evaluates the distance to the hyper plane according to 16.5.32 on p. 891 (Numerical Recipes); sign is the assigned class; x.shape = ...xD - return np.sum((alphas * label)[:,None] * kernel(data, x, gamma), axis=0) + b - -def eval_on_sv(x, alphas, data, label, gamma, C): - return np.sum((alphas * (C-alphas) * label)[:,None] * kernel(data, x, gamma), axis=0) - -def eval_offset_search(alphas, data, label, gamma, C, useavgforb=True): # search for the best offset - maxacc=0 - b1=-9 - for i in np.linspace(-9,9,500): - acc = accuracy_score(label,np.sign(eval_classifier(data, alphas, data, label, gamma, i))) - if acc > maxacc: - maxacc = acc - b1=i - maxacc=0 - b2=9 - reversed_space=np.linspace(-9,9,500)[::-1] - for i in reversed_space: - acc = accuracy_score(label,np.sign(eval_classifier(data, alphas, data, label, gamma, i))) - if acc > maxacc: - maxacc = acc - b2=i - return (b1+b2)/2 - -def eval_offset_MM(alphas, data, label, gamma, C, useavgforb=True): # evaluates offset b according to 16.5.37 (Mangasarian-Musicant variant) NOTE: does not seem to work with integer/very coarsely spaced alpha! - return np.sum(alphas*label) - -def eval_offset_avg(alphas, data, label, gamma, C, useavgforb=True): # evaluates offset b according to 16.5.33 - cross = eval_classifier(data, alphas, data, label, gamma) # cross[i] = sum_j aj yj K(xj, xi) (error in Numerical Recipes) - if useavgforb: - return np.sum(alphas * (C-alphas) * (label - cross)) / np.sum(alphas * (C-alphas)) - #return np.sum(label - cross) / num_sv - else: # this is actually not used, but we did a similar-in-spirit implementation in eval_finaltraining_avgscore.py - if np.isclose(np.sum(alphas * (C-alphas)),0): - print('no support vectors found, discarding this classifer') - return np.nan - bcandidates = [np.sum(alphas * (C-alphas) * (label - cross)) / np.sum(alphas * (C-alphas))] # average according to NR should be the first candidate - crosssorted = np.sort(cross) - crosscandidates = -(crosssorted[1:] + crosssorted[:-1])/2 # each value between f(xi) and the next higher f(xj) is a candidate - bcandidates += sorted(crosscandidates, key=lambda x:abs(x - bcandidates[0])) # try candidates closest to the average first - bnumcorrect = [(label == np.sign(cross + b)).sum() for b in bcandidates] - return bcandidates[np.argmax(bnumcorrect)] - -def eval_acc_auroc_auprc(label, score): # score is the distance to the hyper plane (output from eval_classifier) - precision,recall,_ = precision_recall_curve(label, score) - return accuracy_score(label,np.sign(score)), roc_auc_score(label,score), auc(recall,precision) - - -################ This I/O functions are provided by http://hyperlabelme.uv.es/index.html ################ - -def dataread(filename): - lasttag = 'description:' - # Open file and locate lasttag - f = open(filename, 'r') - nl = 1 - for line in f: - if line.startswith(lasttag): break - nl += 1 - f.close() - - # Read data - data = np.loadtxt(filename, delimiter=',', skiprows=nl) - Y = data[:, 0] - X = data[:, 1:] - # Separate train/test - Xtest = X[Y < 0, :] - X = X[Y >= 0, :] - Y = Y[Y >= 0, None] - - return X, Y, Xtest - - -def datawrite(path,method, dataset, Yp): - filename = '{0}{1}_predictions.txt'.format(path, dataset) - res = True - try: - with open(filename, mode='w') as f: - f.write('{0} {1}'.format(method, dataset)) - for v in Yp: - f.write(' {0}'.format(str(v))) - f.write('\n') - except Exception as e: - print('Error', e) - res = False - return res - -################ - - -def write_samples(X, Y,path): - f = open(path,"w") - f.write("id label data \n") - for i in range(0,X.shape[0]): - f.write(str(i)+" ") - if(Y[i]==1): - f.write("-1 ") - else: - f.write("1 ") - for j in range(0,X.shape[1]): - f.write(str(X[i,j])+" ") - f.write("\n") - f.close() \ No newline at end of file