diff --git a/experiments/utils.py b/experiments/utils.py
deleted file mode 100644
index 785cf6d685fc6e42c121e6e12fea2144498d26bc..0000000000000000000000000000000000000000
--- a/experiments/utils.py
+++ /dev/null
@@ -1,151 +0,0 @@
-# Created by Dennis Willsch (d.willsch@fz-juelich.de) 
-# Modified by Gabriele Cavallaro (g.cavallaro@fz-juelich.de) 
-#         and Madita Willsch (m.willsch@fz-juelich.de)
-
-import sys
-import re
-import json
-import os
-import numpy as np
-import matplotlib.pyplot as plt
-import matplotlib.colors as cols
-from sklearn.metrics import roc_auc_score,average_precision_score,precision_recall_curve,roc_curve,accuracy_score,auc
-
-np.set_printoptions(precision=4, suppress=True)
-
-def kernel(xn, xm, gamma=-1): # here (xn.shape: NxD, xm.shape: ...xD) -> Nx...
-    if gamma == -1:
-        return xn @ xm.T
-    xn = np.atleast_2d(xn)
-    xm = np.atleast_2d(xm)
-    return np.exp(-gamma * np.sum((xn[:,None] - xm[None,:])**2, axis=-1)) # (N,1,D) - (1,...,D) -> (N,...,D) -> (N,...); see Hsu guide.pdf for formula
-
-# B = base
-# K = number of qubits per alpha
-# E = shift of exponent
-# decode binary -> alpha
-def decode(binary, B=10, K=3, E=0):
-    N = len(binary) // K
-    Bvec = float(B) ** (np.arange(K)-E)
-    return np.fromiter(binary,float).reshape(N,K) @ Bvec
-
-# encode alpha -> binary with B and K (for each n, the binary coefficients an,k such that sum_k an,k B**k is closest to alphan)
-def encode(alphas, B=10, K=3, E=0): # E allows for encodings with floating point numbers (limited precision of course)
-    N = len(alphas)
-    Bvec = float(B) ** (np.arange(K)-E) # B^(0-E) B^(1-E) B^(2-E) ... B^(K-1-E)
-    allvals = np.array(list(map(lambda n : np.fromiter(bin(n)[2:].zfill(K),float,K), range(2**K)))) @ Bvec # [[0,0,0],[0,0,1],...] @ [1, 10, 100]
-    return ''.join(list(map(lambda n : bin(n)[2:].zfill(K),np.argmin(np.abs(allvals[:,None] - alphas), axis=0))))
-
-def encode_as_vec(alphas, B=10, K=3, E=0):
-    return np.fromiter(encode(alphas,B,K,E), float)
-
-def loaddataset(datakey):
-    dataset = np.loadtxt(datakey, dtype=float, skiprows=1)
-    return dataset[:,2:], dataset[:,1]  # data, labels
-
-def save_json(filename, var):
-    with open(filename,'w') as f:
-        f.write(str(json.dumps(var, indent=4, sort_keys=True, separators=(',', ': '), ensure_ascii=False)))
-
-def eval_classifier(x, alphas, data, label, gamma, b=0): # evaluates the distance to the hyper plane according to 16.5.32 on p. 891 (Numerical Recipes); sign is the assigned class; x.shape = ...xD
-    return np.sum((alphas * label)[:,None] * kernel(data, x, gamma), axis=0) + b
-
-def eval_on_sv(x, alphas, data, label, gamma, C):
-    return np.sum((alphas * (C-alphas) * label)[:,None] * kernel(data, x, gamma), axis=0)
-
-def eval_offset_search(alphas, data, label, gamma, C, useavgforb=True): # search for the best offset
-    maxacc=0
-    b1=-9
-    for i in np.linspace(-9,9,500):
-        acc = accuracy_score(label,np.sign(eval_classifier(data, alphas, data, label, gamma, i)))
-        if acc > maxacc:
-            maxacc = acc
-            b1=i
-    maxacc=0
-    b2=9
-    reversed_space=np.linspace(-9,9,500)[::-1]
-    for i in reversed_space:
-        acc = accuracy_score(label,np.sign(eval_classifier(data, alphas, data, label, gamma, i)))
-        if acc > maxacc:
-            maxacc = acc
-            b2=i
-    return (b1+b2)/2
-
-def eval_offset_MM(alphas, data, label, gamma, C, useavgforb=True): # evaluates offset b according to 16.5.37 (Mangasarian-Musicant variant) NOTE: does not seem to work with integer/very coarsely spaced alpha!
-    return np.sum(alphas*label)
-
-def eval_offset_avg(alphas, data, label, gamma, C, useavgforb=True): # evaluates offset b according to 16.5.33
-    cross = eval_classifier(data, alphas, data, label, gamma) # cross[i] = sum_j aj yj K(xj, xi) (error in Numerical Recipes)
-    if useavgforb:
-        return np.sum(alphas * (C-alphas) * (label - cross)) / np.sum(alphas * (C-alphas))
-        #return np.sum(label - cross) / num_sv
-    else:  # this is actually not used, but we did a similar-in-spirit implementation in eval_finaltraining_avgscore.py
-        if np.isclose(np.sum(alphas * (C-alphas)),0):
-            print('no support vectors found, discarding this classifer')
-            return np.nan
-        bcandidates = [np.sum(alphas * (C-alphas) * (label - cross)) / np.sum(alphas * (C-alphas))]  # average according to NR should be the first candidate
-        crosssorted = np.sort(cross)
-        crosscandidates = -(crosssorted[1:] + crosssorted[:-1])/2  # each value between f(xi) and the next higher f(xj) is a candidate
-        bcandidates += sorted(crosscandidates, key=lambda x:abs(x - bcandidates[0]))  # try candidates closest to the average first
-        bnumcorrect = [(label == np.sign(cross + b)).sum() for b in bcandidates]
-        return bcandidates[np.argmax(bnumcorrect)]
-
-def eval_acc_auroc_auprc(label, score):  # score is the distance to the hyper plane (output from eval_classifier)
-    precision,recall,_ = precision_recall_curve(label, score)
-    return accuracy_score(label,np.sign(score)), roc_auc_score(label,score), auc(recall,precision)
-
-
-################ This I/O functions are provided by http://hyperlabelme.uv.es/index.html ################ 
-
-def dataread(filename):
-    lasttag = 'description:'
-    # Open file and locate lasttag
-    f = open(filename, 'r')
-    nl = 1
-    for line in f:
-        if line.startswith(lasttag): break
-        nl += 1
-    f.close()
-
-    # Read data
-    data = np.loadtxt(filename, delimiter=',', skiprows=nl)
-    Y = data[:, 0]
-    X = data[:, 1:]
-    # Separate train/test
-    Xtest = X[Y < 0, :]
-    X = X[Y >= 0, :]
-    Y = Y[Y >= 0, None]
-
-    return X, Y, Xtest
-
-
-def datawrite(path,method, dataset, Yp):
-    filename = '{0}{1}_predictions.txt'.format(path, dataset)
-    res = True
-    try:
-        with open(filename, mode='w') as f:
-            f.write('{0} {1}'.format(method, dataset))
-            for v in Yp:
-                f.write(' {0}'.format(str(v)))
-            f.write('\n')
-    except Exception as e:
-        print('Error', e)
-        res = False
-    return res
-
-################ 
-
-
-def write_samples(X, Y,path): 
-    f = open(path,"w") 
-    f.write("id label data \n") 
-    for i in range(0,X.shape[0]):
-        f.write(str(i)+" ")
-        if(Y[i]==1):
-            f.write("-1 ")
-        else:
-            f.write("1 ")
-        for j in range(0,X.shape[1]):
-            f.write(str(X[i,j])+" ")
-        f.write("\n") 
-    f.close() 
\ No newline at end of file