From dd6fb90fb83dcda4ba9017be24581c20b497ed59 Mon Sep 17 00:00:00 2001 From: Mohcine Chraibi <m.chraibi@fz-juelich.de> Date: Thu, 29 Jun 2017 13:05:12 +0200 Subject: [PATCH] Update 2016-03-24-latex.md --- _posts/2016-03-24-latex.md | 315 +++++++++++++++++++++++++++++++++---- 1 file changed, 286 insertions(+), 29 deletions(-) diff --git a/_posts/2016-03-24-latex.md b/_posts/2016-03-24-latex.md index 8ecf666..4a3d8cb 100644 --- a/_posts/2016-03-24-latex.md +++ b/_posts/2016-03-24-latex.md @@ -5,45 +5,302 @@ date: 2017-03-05 tags: ["example", "math"] --- -KaTeX can be used to generate complex math formulas server-side. -$$ -\phi = \frac{(1+\sqrt{5})}{2} = 1.6180339887\cdots -$$ +<!-- START doctoc generated TOC please keep comment here to allow auto update --> +<!-- DON'T EDIT THIS SECTION, INSTEAD RE-RUN doctoc TO UPDATE --> +**Table of Contents** *generated with [DocToc](https://github.com/thlorenz/doctoc)* -Additional details can be found on [GitHub](https://github.com/Khan/KaTeX) or on the [Wiki](http://tiddlywiki.com/plugins/tiddlywiki/katex/). -<!--more--> +- [General model parameters (for all models)](#general-model-parameters-for-all-models) +- [Model_parameters](#model_parameters) +- [Agent_parameters](#agent_parameters) + - [Desired speed](#desired-speed) + - [Shape of pedestrians](#shape-of-pedestrians) +- [Generalized Centrifugal Force Model](#generalized-centrifugal-force-model) +- [Gompertz model](#gompertz-model) +- [Collision-free speed model](#collision-free-speed-model) + - [Model parameters](#model-parameters) + - [Agent parameters (recommendations)](#agent-parameters-recommendations) +- [Wall-avoidance model](#wall-avoidance-model) + - [Parameters](#parameters) +- [Generalized Centrifugal Force Model with lateral swaying](#generalized-centrifugal-force-model-with-lateral-swaying) -### Example 1 +<!-- END doctoc generated TOC please keep comment here to allow auto update --> -If the text between $$ contains newlines it will rendered in display mode: + +Several operational models are implemented in `jpscore`. +An operational model defines how pedestrians moves from one time step to the next. +In the definition of agent's properties it is mandatory to precise the number of the model to be used e.g.: + +```xml +<agents operational_model_id="n"> ``` -$$ -f(x) = \int_{-\infty}^\infty\hat f(\xi)\,e^{2 \pi i \xi x}\,d\xi -$$ + +where `n` is 1, 2, 3, 4 or 5. + + +### General model parameters (for all models) +The definition of any model parameter is composed of two different +sections: + +- **model_parameters**: Model specific parameter. See below in the different model sections. +- **agent_parameters**: These parameter are mainly specific for the shape of pedestrians + or other pedestrian properties like desired speed, reaction time etc. + +### Model_parameters +- `<solver>euler</solver>` + - The solver for the ODE. Only *Euler*. No other options. +- `<stepsize>0.001</stepsize>`: + - The time step for the solver. This should be choosed with care. For force-based model it is recommended to take a value between $`10^{-2} `$ and $`10^{-3}`$ s. + For first-order models, a value of 0.05 s should be OK. + A larger time step leads to faster simulations, however it is too risky and can lead to +numerical instability, collisions and overlapping among pedestrians. + - Unit: s +- `<periodic>0</periodic>` + - Set to 1 if a system with closed boundary conditions should be simulated. Default setting is 0. + - This option is only implemented in *Tordeux2015* and is very geometry-specific (only for corridors) with predefined settings. See Utest/Validation/1test_1D/ for a use case. + +- `<exit_crossing_strategy>3</exit_crossing_strategy>` + - Positive values in $`[1, 9]`$. See [Direction strategies](2016-11-02-direction.html) for the definition of the strategies. + +- `<linkedcells enabled="true" cell_size="2"/>` + - Defines the size of the cells. This is important to get the neighbors of a pedestrians, which + are all pedestrians within the eight neighboring cells. Larger cells, lead so slower simulations, since + more pedestrian-pedestrian interactions need to be calculated. + - Unit: m + + +### Agent_parameters +The *agent parameters* are mostly identical for all models. Exceptions will be mentioned explicitly. + +The parameters that can be specified in this section are Gauss distributed (default value are given). + +#### Desired speed +- `<v0 mu="1.2" sigma="0.0" />` + - Desired speed + - Unit: m/s +- `<v0_upstairs mu="0.6" sigma="0.167" />` + - Desired speed upstairs + - Unit: m/s +- `<v0_downstairs mu="0.6" sigma="0.188" />` + - Desired speed downstairs + - Unit: m/s +- `<v0_idle_escalator_upstairs mu="0.6" sigma="0.0" />` + - Speed of idle escalators upstairs + - Unit: m/s +- `<v0_idle_escalator_downstairs mu="0.6" sigma="0.0" />` + - Speed of idle escalators downstairs + - Unit: m/s + +#### Shape of pedestrians +Pedestrians are modeled as ellipses with two semi-axes: $`a`$ and $`b`$, where + +$` +a= a_{min} + a_{\tau}v, +`$ + +and + +$` +b = b_{max} - (b_{max}-b_{min})\frac{v}{v^0}. +`$ + +$`v`$ is the peed of a pedestrian. + +- `<bmax mu="0.15" sigma="0.0" />` + - Maximal length of the shoulder semi-axis + - Unit: m +- `<bmin mu="0.15" sigma="0.0" />` + - Minimal length of the shoulder semi-axis + - Unit: m +- `<amin mu="0.15" sigma="0.0" />` + - Minimal length of the movement semi-axis. This is the case when $`v=0`$. + - Unit: m +- `<atau mu="0." sigma="0.0" />` + - (Linear) speed-dependency of the movement semi-axis + - Unit: s + +Other parameters in this section are: + +- `<tau mu="0.5" sigma="0.0" />` + - Reaction time. This constant is used in the driving force of the force-based forces. Small $`\rightarrow`$ instantaneous acceleration. + - Unit: s +- `<T mu="1" sigma="0.0" />` + - Specific parameter for model 3 (Tordeux2015). Defines the slope of the speed function. + +### Generalized Centrifugal Force Model +[Generalized Centrifugal Force Model][#GCFM] is a force-based model. + +Usage: + +```xml +<model operational_model_id="1" description="gcfm"> ``` -$$ -f(x) = \int_{-\infty}^\infty\hat f(\xi)\,e^{2 \pi i \xi x}\,d\xi -$$ +### Gompertz model +[Gompertz Model][#gompertz] is a force-based model. -### Example 2 +Usage: + +```xml +<model operational_model_id="2" description="gompertz"> ``` -$$ -\frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } } -$$ + + +### Collision-free speed model +[Collision-free speed model][#Tordeux2015] is a velocity-based model. See also this [talk](https://fz-juelich.sciebo.de/index.php/s/1pYFETbvJdJDusE) for more details about the model. + +Usage: + +```xml +<model operational_model_id="3" description="Tordeux2015"> ``` -$$ -\frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } } -$$ - -### Example 3 +#### Model parameters +Besides the options defined in [Mode_parameters](#model_parameters) the following options are necessary for this model: + +- `<force_ped a="5" D="0.2"/>` + - The influence of other pedestrians is triggered by $`a`$ and $`D`$ where $`a`$ is the strength if the interaction and $`D`$ gives its range. The naming may be misleading, since the model is **not** force-based, but velocity-based. + - Unit: m +- `<force_wall a="5" D="0.02"/>`: + - The influence of walls is triggered by $`a`$ and $`D`$ where $`a`$ is the strength if the interaction and $`D`$ gives its range. A larger value of $`D`$ may lead to blockades, especially when passing narrow bottlenecks. + - Unit: m + +The names of the aforementioned parameters might be misleading, since the model is *not* force-based. The naming will be changed in the future. + +#### Agent parameters (recommendations) +Actually, this model assumes circular pedestrian's shape, therefore the parameter for the semi-axes [Agent_parameters](#agent_parameters) should be chosen, such that circles with constant radius can be obtained. +For example: + +```xml +<bmax mu="0.15" sigma="0.0" /> +<bmin mu="0.15" sigma="0.0" /> +<amin mu="0.15" sigma="0.0" /> +<atau mu="0." sigma="0.0" /> ``` -$$ -1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots = \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}, \quad\quad \text{for }\lvert q\rvert<1. -$$ + +This defines circles with radius 15 cm. + + +In summary the relevant section for this model could look like: + +```xml +<model operational_model_id="3" description="Tordeux2015"> + <model_parameters> + <solver>euler</solver> + <stepsize>0.05</stepsize> + <exit_crossing_strategy>3</exit_crossing_strategy> + <linkedcells enabled="true" cell_size="2"/> + <force_ped a="5" D="0.2"/> + <force_wall a="5" D="0.02"/> + </model_parameters> + <agent_parameters agent_parameter_id="1"> + <v0 mu="1.34" sigma="0.0" /> + <v0_upstairs mu="0.668" sigma="0.167" /> + <v0_downstairs mu="0.750" sigma="0.188" /> + <v0_idle_escalator_upstairs mu="0.5" sigma="0.0" /> + <v0_idle_escalator_downstairs mu="0.5" sigma="0.0" /> + <bmax mu="0.15" sigma="0.0" /> + <bmin mu="0.15" sigma="0.0" /> + <amin mu="0.15" sigma="0.0" /> + <atau mu="0." sigma="0.0" /> + <tau mu="0.5" sigma="0.0" /> + <T mu="1" sigma="0.0" /> + </agent_parameters> +</model> +``` + +### Wall-avoidance model + +[Wall-avoidance model][#ModelGraf2015] is a velocity-based model. The Wall-Avoidance Model focuses on valid pedestrian positions. The interaction of agents with walls takes precedence over the agent-to-agent interaction. There are two key aspects: + +* In the vicinity to walls, agents take on a different behaviour, slowing them down (parameter: slowdowndistance) + + * Agents follow special floorfields, directing them to the targets/goals, which will have them avoid walls if possible (free space) + +Valid exit strategies are {6, 8, 9}. Please see details below. + + +(Sample) Usage: + +```xml +<model operational_model_id="4" description="gradnav"> + <model_parameters> + <solver>euler</solver> + <stepsize>0.01</stepsize> + <exit_crossing_strategy>9</exit_crossing_strategy> + <floorfield delta_h="0.0625" wall_avoid_distance="0.4" + use_wall_avoidance="true" /> + <linkedcells enabled="true" cell_size="4.2" /> + <force_ped nu="3" b="1.0" c="3.0" /> + <force_wall nu="1" b="0.70" c="3.0" /> + <anti_clipping slow_down_distance=".2" /> + </model_parameters> + <agent_parameters agent_parameter_id="0"> + <v0 mu="1.5" sigma="0.0" /> + <bmax mu="0.25" sigma="0.001" /> + <bmin mu="0.20" sigma="0.001" /> + <amin mu="0.18" sigma="0.001" /> + <tau mu="0.5" sigma="0.001" /> + <atau mu="0.23" sigma="0.001" /> + </agent_parameters> +</model> +``` + +#### Parameters #### + +- `<exit_crossing_strategy>[6, 8, 9]</exit_crossing_strategy>` + The strategies 6, 8 and 9 differ only in the way the floorfield is created: + - 6: one floorfield over all geometry (building); only in 2D geometries; directing every agent to the closest exit + - 8: multiple floorfield-objects (one for every __room__); each object can create a floor field on the fly to a target line (or vector of lines) within the room; working in multi-floor-buildings; requires a router that provides intermediate targets in the same room + - 9: (__recommended__) multiple floorfield-objects (one for every __subroom__); + each object can create a floor field on the fly to a target line (or vector of lines) + within the same subroom; working in multi-floor-buildings; + requires a router that provides intermediate targets in the same subroom; + +- `<floorfield delta_h="0.0625" wall_avoid_distance="0.4" use_wall_avoidance="true" />` + - The parameters define: + - __delta_h__: discretization/stepsize of grid-points used by the floor field + - __wall_avoid_distance__: below this wall-distance, the floor field will show a wall-repulsive character, directing agents away from the wall + - __use_wall_avoidance__: {true, false} switch to turn on/off the enhancement of the floor field +<img src="https://cst.version.fz-juelich.de/jupedsim/jpscore/uploads/785cda284f5f44d2b019332d29b8075e/transformFF.png" width="300" height="300" /> + +- `<linkedcells enabled="true" cell_size="4.2" />` + - range in which other pedestrians are considered neighbours and can influence the current agent. This value defines cell-size of the cell-grid. + +### Generalized Centrifugal Force Model with lateral swaying + +The [Generalized Centrifugal Force Model with lateral swaying][#Krausz] is mostly identical to the GCFM Model, +but instead of a variable semi-axis $`b`$ of the ellipse simulating the pedestrian, pedestrians perform an oscillation perpendicular to their direction of motion. +As a consequence the parameter `Bmax` is ignored. + +Usage: + +```xml +<model operational_model_id="5" description="krausz"> ``` -$$ -1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots = \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}, \quad\quad \text{for }\lvert q\rvert<1. -$$ + +Four Parameters can be passed to control the lateral swaying, for example: + +`<sway ampA="-0.14" ampB="0.21" freqA="0.44" freqB="0.35" />` + +- `ampA` and `ampB` determine the amplitude of the oscillation according to the linear relation + $`A = \texttt{ampA} \cdot \| v_i \| + \texttt{ampB}`$. + +- `freqA` and `freqB` determine the frequency of the oscillation according to + $`f = \texttt{freqA} \cdot \| v_i \| + \texttt{freqB}`$. + +Setting `ampA` and `ampB` to 0 disables lateral swaying. If not specified, the empirical values given in [Krausz, 2012][#Krausz] are used, that is: + +- `ampA` = -0.14, `ampB` = 0.21 and +- `freqA` = 0.44, `freqB` = 0.25. + + +[#GCFM]: http://journals.aps.org/pre/abstract/10.1103/PhysRevE.82.046111 "Mohcine Chraibi, Armin Seyfried, and Andreas Schadschneider Phys. Rev. E 82, 046111" + +[#gompertz]: http://trg-india.org/trg_conference_2015 "Kemloh Wagoum, Armel Ulrich, Mohcine Chraibi, Jun Zhang and Gregor Lämmel. JuPedSim: An Open Framework for Simulating and Analyzing the Dynamics of Pedestrians. In 3rd Conference of Transportation Research Group of India, 2015." + +[#Tordeux2015]: http://arxiv.org/abs/1512.05597 "Tordeux, Antoine, Chraibi, Mohcine and Seyfried, Armin, Collision-free speed model for pedestrian dynamics. In Traffic and Granular Flow '15, to appear." + +[#ModelGraf2015]: https://fz-juelich.sciebo.de/index.php/s/VFnUCH2gtz1mSoL "Arne, Graf Master thesis" + +[#Krausz]: https://link.springer.com/chapter/10.1007/978-3-319-02447-9_61 -- GitLab