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Abstract—In situ workflows contain tasks that exchange mes-
sages composed of several data fields. However, a consumer task
may not necessarily need all the data fields from its producer.
For example, a molecular dynamics simulation can produce atom
positions, velocities, and forces; but some analyses require only
atom positions. The user should decide whether to specialize
the output of a producer task for a particular consumer and
get better performance or to send more data than required by
the consumer. The first option limits task portability, while the
second wastes resources. In this paper, we introduce contracts

for in situ tasks. A contract specifies for a producer each data
field available for output and for a consumer the data fields
needed as input. Comparing a producer and consumer contract
allows automatic selection of the data fields a producer has to
send for that consumer. We integrated our contracts mechanism
within Decaf, a middleware for building and executing in situ
workflows. Contracts enable to automatically extract at the
producer the data the consumer needs. We evaluate the cost and
performance of message extraction at runtime with both synthetic
examples and a real scientific workflow coupling a molecular
dynamics simulation with three different data analytics codes.
Our contract-based automatic data extraction removes the need
to specialize producers while entailing small overheads.

I. INTRODUCTION

As supercomputers grow in size and computational power

each year [1], scientists using these platforms are generating

and processing an ever-increasing amount of data. Tradi-

tionally, simulation and analysis applications communicate

through files. As we approach exascale, however, the gap

between computing rate and the I/O bandwidth of high-

performance computing (HPC) platforms has become critical,

and post processing data analysis is no longer practical. More-

over, the same amount of computing power may be necessary

to analyze this data. These trends motivate the emergence of

in situ processing, where data analysis is performed as close

as possible to where and when the data is produced.

Many frameworks have been developed to design and exe-

cute in situ workflows ([2], [3], [4]), coupling scientific simula-

tion applications with analytics and visualization tasks. In situ

frameworks decouple as much as possible data management

from the applications. A simulation application produces data,

and the middleware takes care of routing these data through

the communication channels to the tasks performing analytics.

Often the extraction of the data required by the different

analysis is hard-coded in the simulation. If the frequency or

the span of data required by the analysis changes, the simula-

tion code needs to be updated accordingly. One conservative

approach consists of packing and sending a superset of the

needed data, with the analysis filtering what they actually need.

However, this approach overloads the memory and network

with unnecessary data.

In this paper we propose to augment in situ frameworks

with a contracting mechanism to automatically extract from

the simulation the data the analysis requires. Our goals are:

(1) reduce the amount of data sent over the network to the

strict minimum required by a consumer task, and (2) limit the

intrusion of analysis in the simulation code. Thus, we move

away from the model inherited from classical file writing,

where the simulation is explicitly in charge of the data to

output, to an analytics driven model where the simulation

focuses on its core job, namely updates its internal variables as

the time progress, while data extraction is actually defined by

the analysis. A contract between a producer and a consumer

enables checking that the consumer needs are compatible

with the producer outputs and building a message containing

only the data required by the consumer. We implement our

model of contracts within Decaf [5], a middleware for building

and executing in situ workflows. We evaluate the overheads

and the performance within Decaf both with two synthetic

examples and with Gromacs, a molecular dynamics simulation

application [6], coupled with different data analyses.

The outline of the paper is as follows. Related work is

reviewed in Section II. We present our model of contracts

in Section III. Section IV details the modifications done to

Decaf to implement the management of contracts and message

filtering. Section V shows experimental results. Section VI

presents our conclusion and discusses future work.
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II. RELATED WORK

A. Data models

We define a data model to be an abstraction of a structure

containing different data objects, or data fields.

Several ways of describing and managing data models

for large-scale parallel applications have been proposed in

the literature. These involve methods to easily access and

manipulate each field in a data model, but they do not support

contracting.

Conduit [7] proposes a JSON-based data model for describ-

ing hierarchical in-core scientific data with a dynamic API for

the construction and consumption of hierarchical objects. The

JSON schema enables a data model description external to

the code. Having the consumer and producer using the same

JSON schema ensures that the consumer serializes messages

that the consumer can deserialize and interpret correctly.

The Bredala [8] library provides a simple API to construct

parallel data models with enough information to safely split

and merge sub datamodels while preserving the data semantic.

Bredala also provides various data redistribution components

with an M×N communication pattern.

HDF5 [9] is a data model and a file format for flexible and

efficient I/O in scientific workflows. FFS [10] is a data model

that resembles C structures where each field is described by its

name, type, size, and an offset in the data structure. FFS is used

by the EVPath [11] middleware to perform data processing

of dynamic variable-sized models and structures that can be

described recursively, such as trees and graphs.

B. In situ middleware

In situ middleware comes from various communities.

VisIt [12] and ParaView [13] are widely used tools to analyze

and visualize scientific data. Both tools have an in situ

library, respectively Libsim [14] and Catalyst [13], to couple

simulations to their visualization servers. VisIt uses a specific

model of contracts [15] to describe the data modifications

of each filter of the VisIt pipeline. These contracts are

used to optimize the size of data objects retrieved from the

simulation. Our contract mechanism applies to any type of

data, and includes the temporality of the data. Matthes et

al. present ISAAC [16], an open source library for in situ

visualization and steering. Different visualization renderings

acting directly on the simulation data are proposed, with

possible data transformation before visualization and message

passing to the simulation for steering.

Other in situ middleware originates from the I/O commu-

nity, such as ADIOS [17], that uses helper cores and staging

nodes to perform parallel I/O operations. ADIOS utilizes a

data model defined in an external XML file to encode the

data hierarchy, data type specifications, and process grouping

and describes how to process the data. It enables changing the

I/O behavior without code changes.

Damaris [18] uses dedicated helper cores and shared mem-

ory to perform asynchronous data processing and I/O in order

to reduce variability in I/O performance. An in situ visual-

ization framework, Damaris/Viz [19], built on Damaris, has

proposed to directly couple simulations with VistIt requiring

less code modification than using the Libsim library directly.

Damaris also comes with a XML-based data model used as a

tier to share information between the simulation and the helper

cores.

Tiwari et al. [20] propose an approach to perform in

situ data analysis on the solid-state disks (SSDs) present in

HPC platforms, using the storage controllers to compute data

already residing in the SSDs.

The FlexIO middleware [21] supports different placement

strategies for analytics in a workflow and provides data

management and communication between tasks. Moreover,

FlexIO includes dynamics codelets, called data conditioning

(DC) plug-ins, to perform selection and transformation of data

transiting between two workflow tasks.

Champsaur et al. propose SmartBlock [22], an approach to

design generic and reusable data manipulation and analysis

components for in situ workflows, relying on the ADIOS data

model. Specifically, the Select component permits the selection

of a subpart of a multidimensional array by indicating the list

of dimensions to keep for output.

General frameworks have been designed for connecting and

managing different parallel applications in a workflow, such as

FlowVR [23]. Originally designed for virtual reality at large

scale, FlowVR has been adapted to support in situ applications

with a runtime system to deploy the workflow tasks and

manage communications between them. FlowVR messages are

raw buffers that do not rely on a particular data model.

Decaf [5] is an in situ middleware for building and ex-

ecuting workflows, providing a simple put/get API for data

communication between two parallel nodes. Decaf provides a

Python API to describe an in situ workflow and relies on the

data model and redistribution components of Bredala [8] to

handle communication. Bredala provides mechanism to create

and manipulate a data model field by field. Manala [24] is

used on top of Decaf to filter messages based on their iteration

number. Our contract mechanism extends that functionality to

filter individual fields within a data model.

III. CONTRACTS

A contract specifies for a producer each data object avail-

able per output and for a consumer the data objects needed

per input. Knowing beforehand the list of data output by

each producer and the list of data used by each consumer

permits sending through the communication channels only

the required data and thus reduces the bandwidth usage and

message packing/unpacking costs.

A. Preliminaries

We define an in situ workflow as a directed graph, possibly

containing cycles, where nodes are parallel tasks, usually sim-

ulation or analytics, sending and/or receiving data from other

nodes through communication channels. A communication
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channel, also denoted by data f low, is an edge between a

producer task and a consumer task in the workflow graph.

We denote by field the triplet (name, type, periodicity)
describing a data field with the name, type, and periodicity of

the field. The periodicity is the frequency at which the field

is available. For example, we can define the data model of a

particle produced at each iteration to be the composition of

the index, position of that particle, and velocity in the three

spatial dimensions. Thus, the three fields describing the data

model of a particle are as follows:

- (index, integer, 1)

- (position, array of floats, 1)

- (velocity, array of floats, 1)

B. Contract model

We denote by output contract the set of fields that a

producer makes available for output and by input contract the

set of fields that a consumer requires for input. A producer

task can output several data models. In that case, an output

contract is defined for each output. Similarly, a consumer task

can receive several data models. An input contract is then

defined for each input.

For a producer, a periodicity of k means that the data

field will be sent every k iterations. For a consumer the

requested periodicity is defined relative to the producer output

periodicity. A consumer requesting a field at periodicity k will

get the field every k iterations the producer makes available.

Knowing for each dataflow the list of data fields that are sent

by the producer and required by the consumer, we can compute

the list of data fields and their period at which they have to

be transmitted to the consumer. We denote by matching list

the list of contract-fields describing the data that the producer

needs to send. The matching list of a dataflow is computed

from the output contract of the producer and the input contract

of the consumer.

Algorithm 1 presents the pseudo code of the function

computing a matching list. A field of the input contract is

in the matching list if and only if there is a field in the

output contract with the same name and the same type. If a

field in the consumer contract is not present in the producer

contract, an error is raised (line 7 Alg. 1). A contract-field

also contains the absolute periodicity extraction of that field

at the producer. This periodicity is the product of the field

periodicity in the producer and consumer contracts. For

example, consider a data field with a periodicity of 3 for

the producer and a periodicity of 2 for the consumer. The

sequence of iterations where the data field is available at

the producer is S1 = (0, 3, 6, 9, 12, 15, 18, . . .), and the

consumer requires the data field only every two iterations.

Thus, it is sufficient to send this data field at iterations

S2 = (0, 6, 12, 18, . . .), namely, at an absolute periodicity of

3×2 = 6.

A matching list is associated with a communication channel

between a producer output and a consumer input. If a producer

Algorithm 1: Pseudo code to compute the matching list

of contract-fields between two contracts.

Input : A producer and a consumer contracts

(prod-contract and cons-contract).

Output: The matching list of contract-fields (matching).

1 matching = /0

2 forall (name, type, cons-period) ∈ cons-contract do

3 if ∃ (name, type, prod-period) ∈ prod-contract then

4 periodicity = cons-period× prod-period

5 matching = matching∪{(name, type, periodicity)}
6 else

7 print ”ERROR: data field mismatch”

8 end

9 end

10 return matching

is connected to multiple consumers, a separate matching list

is computed between the producer output and each consumer.

If several producers are connected to a single consumer, a

separate matching list is computed between each producer and

the consumer.

In situ middleware can use the computed matching list to

send only the required data and thus reduce the size of the

message sent through the communication channel.

C. Intermediate contract

Several in situ packages run intermediate code to perform

data manipulations on a message while in a communication

channel. These intermediate data operators can be either user

or system defined (e.g., FlowVR filters [23], FlexIO Data

Conditioning plug-ins [21], Decaf links [5]). These opera-

tors act only on a subset of the data fields composing the

message. They are used, for instance, to convert data field

units. The nonmodified fields are automatically forwarded by

the middleware without explicit calls from the operator. That

automatic forwarding guarantees the genericity of the operator.

As a result we cannot use the same type of contract as with

for producers and consumers because these contracts expect a

description of all the data fields transiting through the operator.

We present here an extension of the contract model, called

middle-contract, to support such intermediate operators. The

goal is to deduct which data field must be forwarded by

the operator given the fields modified by the operator, the

producer, and consumer contracts.

When a data operator is present in a dataflow, a message

is sent from the producer to the consumer in two steps.

First, the message is sent from the producer to the operator.

Second, the resulting message is sent from the operator to the

consumer. Thus, this intermediate data operator plays the role

of a consumer in the first step and of a producer in the second

step. We can view this dataflow as a succession of two sub-

dataflows, one between the producer and the data operator and

one between the data operator and the consumer.

A middle-contract, attached to a data operator, is composed

of an input contract that is used during the first step of the
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communication and an output contract that is used during

the second step. Thus, the matching list of the dataflow is

split in two lists: list prod and list middle. The list prod

describes the data model of the messages transiting in the first

sub-dataflow. It corresponds to the matching list between the

producer output contract and the data operator input contract.

The list middle describes the data model of the messages

transiting in the second sub-dataflow. It corresponds to the

matching list between the data operator output contract and

the consumer input contract.

Actually these intermediate operators may modify only a

subset of the fields. We thus attach a Boolean value forward-

fields to a middle-contract to include in the matching list

the fields that are sent by the producer and required by the

consumer without explicitly adding their contract-fields in the

middle-contract. This way, a middle-contract describes only

the modifications performed by the data operator and does not

have to explicitly declare the other fields exchanged between

the producer and the consumer. For example, consider a

producer sending 10 fields to a consumer, with a data operator

modifying only one field. Setting forward-fields to True allows

one to put only the modified field in the middle-contract while

still including the other 9 fields in the computed matching lists.

If forward-fields is set to True, the two computed matching

lists are updated with contract-fields of the consumer contract

if and only if there is a contract-field with the same name and

the same type in the producer contract but not in the middle-

contract. As for regular contracts, we update the periodicity of

each added contract-field to be the product of periodicities of

this field in the producer contract and in the consumer contract.

Algorithm 2 presents the pseudo code to update the two

matching lists when forward-fields is set to True. If set to

False, no update of the matching lists is required, and the

function is not called. We can summarize the computation of

the two matching lists when a data operator is present in a

dataflow by the three following steps:

1) Compute list prod with the producer output contract

and the data operator input contract with Algorithm 1.

2) Compute list middle with the data operator output con-

tract and the consumer input contract with Algorithm 1.

3) If forward-fields is set to true, complete list prod and

list middle with Algorithm 2.

Figure 1 summarizes our model with a simple two-nodes

example. The contracts of the producer and the consumer as

well as the middle-contract are in the solid-line rectangles

while the two corresponding matching lists are in the dashed-

line rectangles. The producer outputs two fields, an integer and

a floating-point value, every iteration. The consumer requires

two fields: an integer dataA every two iterations and an integer

dataB every iteration. The data operator between these two

nodes converts the field dataB from a floating-point value

to an integer every iteration and forwards the other fields

present in the data model. Thus, the matching lists of the

dataflow between the two nodes contain the field dataA with

Fig. 1: Schema representing contracts and middle-contract

(solid-line rectangles) for a two-tasks example and their cor-

responding matching lists (dashed-line rectangles).

a periodicity of 2 and the field dataB whose type correspond

to the transformation from a floating-point value to integer

performed by the data operator, with a periodicity of 1.

Algorithm 2: Pseudo code to update the matching lists if

forward-fields is set to True. The variables x at lines 2 and

8 denote any value of periodicity.

Input : The producer and consumer contracts

(prod-contract and cons-contract) and the two

matching lists (listprod and listmiddle) of a

dataflow.

Output: The updated matching lists.

1 forall (name, type, cons-period) ∈ cons-contract do

2 if (name, type, x) /∈ listprod then

3 if ∃ (name, type, prod-period) ∈ prod-contract

then

4 periodicity = cons-period× prod-period

5 listprod = listprod ∪{(name, type, periodicity)}
6 end

7 end

8 if (name, type, x) /∈ listmiddle then

9 if ∃ (name, type, prod-period) ∈ prod-contract

then

10 periodicity = cons-period× prod-period

11 listmiddle =
listmiddle∪{(name, type, periodicity)}

12 else

13 print ”ERROR: data field mismatch.”

14 end

15 end

16 end

17 return (listprod , listmiddle)

IV. INTEGRATION WITHIN DECAF

We implemented our model within the Decaf middleware.

We present in this section the modifications made to include

contracts within Decaf. We first describe the modifications

done at the Python level to compute the matching lists. Second,

we describe the changes in the code of the runtime to filter

the data that are sent with respect to these matching lists.
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#Node declaration
producer = Node(’node0’, start_proc=0, nprocs=4,

func=’producer’, cmdline=’program’)
producer.addOutput(’dataA’, ’int’, 1)
producer.addOutput(’dataB’, ’float’, 1)

consumer = Node(’node1’, start_proc=6, nprocs=2,
func=’consumer’, cmdline=’program’)

consumer.addInput(’dataA’, ’int’, 2)
consumer.addInput(’dataB’, ’int’, 1)

#Edge declaration
edge = Edge(’node0’, ’node1’, start_proc=4,

nprocs=2, func=’link’, path=link_path,
prod_dflow_redist=’count’,
dflow_con_redist=’count’, cmdline=’program’)

edge.addInput(’dataB’, ’float’, 1)
edge.addOutput(’dataB’, ’int’, 1)
edge.setForwardFields(True)

#Populating the graph
graph = DiGraph()
graph.addNode(producer)
graph.addNode(consumer)
graph.addEdge(edge)

#Generation of the JSON and SH files
processGraph(graph, ’program’)

Listing 1: Python example for the declaration of a two-nodes

workflow with Contracts.

A. Python API modifications

To handle the utilization of contracts, we updated the

Python API of Decaf to be able to declare contracts and

middle-contracts before attaching them to workflow nodes

and links. We implemented the two functions presented in

Algorithms 1 and 2, Section III, to check that the producer

and consumer contracts of a dataflow are matching and to

compute their matching lists. The Python script generates an

intermediate JSON file used to configure the runtime of Decaf.

We integrated the matching lists of each dataflow into the

JSON file for the filtering of data at runtime.

Listing 1 presents the Python script describing the two-

nodes example of Section III, including the description of each

contract.

B. Runtime modifications

The management of contracts at runtime is done at the

Decaf level and is completely transparent to the user. Thus,

no modification of the user code is required.

The Decaf API exposes to the user simple methods to

receive (get()) and send (put()) data from and to other

tasks. The Decaf put() is called by producer tasks or by data

operators included in Decaf called links. The put augmented

with our contracts is composed of three steps: automatic data

filtering, serialization, and data sending (MPI_ISend()).

Automatic data filtering implements a function f ilterMessage

presented in Algorithm 3. The function verifies whether the

producer or the link respects its output contract by checking,

for each contract-field in the matching list, whether the field

is present in the data with the correct type. If so, the field is

added to a new message f iltered data if the current iteration

is a multiple of the field periodicity. This way, every other

field present in the original data that is not in the matching

list, or present at a different iteration, is not sent through the

communication channel. We also modify the Decaf get()

function to optionally check that the data received respect the

input contract of the consumer or the link.

Decaf relies on Bredala [8] for its data model. A Bredala

data model is a map between field names and pointers to

user data. The function f ilterMessage manipulates only the

pointers to the data to create f iltered data. After filtering,

Decaf serializes the data into a message and sends it to its

destination.

Algorithm 3: Pseudo code of the function filterMessage to

check the matching lists and perform data field selection

at runtime.

Input : The original data, the matching list list and the

current iteration

Output: The extracted message f iltered data

1 f iltered data = Empty message

2 forall (name, type contract, periodicity) in list do

3 if iteration % periodicity == 0 then

4 if name /∈ data then

5 ERROR: ”field not in data”

6 end

7 f ield ← getData(data,name)

8 type f ield ← getType( f ield)

9 if type contract �= type field then

10 ERROR: ”types do not match”

11 else

12 Add f ield in f iltered data

13 end

14 end

15 end

16 return f iltered data

V. PERFORMANCE EVALUATION

We present in this section the analysis of the cost and

performance of message filtering using contracts within

Decaf. We define two synthetic tests and one real scientific

workflow coupling Gromacs, a molecular dynamics simulation

application, with three different data analytics codes.

The experiments were conducted on Froggy, a cluster of 190

computing nodes of the Ciment infrastructure. Each node has

two 8-core processors Intel Sandy Bridge EP E5-2670 at 2.6

GHz and 64 GB of memory and nodes are interconnected with

an FDR InfiniBand network. We used OpenMPI version 1.10.2

to compile Decaf and Python version 2.7.5 for the scripts.

For the test with the molecular dynamics application, we

used the version 4.5.5 of Gromacs simulating a FepA protein,

composed of about 70,000 atoms.

A. Filtering cost

In the first test, we analyze the overhead of the filtering

function when the utilization of contracts is not necessary,

that is when the contracts of the producer and the consumer

of a dataflow are identical. We describe our workflow as a

single dataflow between two nodes with no link. The producer

and the consumer have the same number nprocs of processes,
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ranging from 1 to 512, and a message is sent every iteration

during 1,000 iterations. The message contains a number of

fields n f ields ranging from 1 to 10 with the size of each field

ranging from 40 kB to 40 MB. We ran each experiment with

two configurations: f ilter with contract-based filtering active,

and no f ilter with contracts disabled (all data available at the

producer are sent to the consumer). In both configurations, the

periodicity of each field is set to 1, and the data checking is

disabled during the call to Decaf get().

Figure 2 presents the average processing time of a put for

a total of 1,000 iterations as a function of the number of

processors nprocs (x-axis), the number of exchanged fields

n f ields (columns) and the size of each field size (rows). We

observe that the two versions present similar results in terms of

time spent during the put function, with an average difference

of 3.5%.

To explain this result, we measured (Figure 3) the ratio of

the time spent in f ilterMessage over the time spent in put for

f ilter as a function of the three parameters nprocs, n f ields,

and size. We see that the proportion of time spent in the

filtering function increases as the number of fields increases

but decreases as the array size increases. With a field size of

40 kB, the time spent in the f ilterMessage function is 5.3%

on average and decreases to less than 0.01% with a field size

of 40 MB.

Decaf put augmented with our contracts is composed of

three steps: automatic data filtering, serialization, and sending

data (MPI_ISend()). The automatic data filtering complex-

ity is linear in the number of fields, whereas the serialization

and communication are linear in function of the message size.

Consequently, the ratio of automatic filtering decreases as the

message size increases up to the point where, if messages are

large enough (40MB per field), the automatic data filtering

comes virtually at no cost.

B. Automatic filtering evaluation

For the second test, we analyze the performance of message

filtering using contracts compared with a manual filtering and

no filtering of messages (all data are sent to all consumers).

In both configurations, the periodicity of each field is set to

1 and the data checking is disabled during the call to Decaf

get().

The workflow of this second test consists of one producer

sending several fields and three consumers requiring only one

field each. Each consumer has nprocs processes, ranging from

1 to 128, and the producer has 3×nprocs processes. The data

sent by the producer contains 1, 5, or 10 fields with a size

ranging from 40 kB to 40 MB. We ran each configuration

with three different filtering methods. The first methods uses

automatic filtering (auto), the second applies a manual filtering

(manual), and the third does not filter data (none). Automatic

filtering filters messages at the Decaf level during the call

to Decaf put. Manual filtering required a modification of the

simulation code to explicitly build the expected messages at

the producer side before calls to put. Instead of creating a

single message containing all fields, three different messages
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Fig. 4: Average time spent in put (log-scale) as a function

of nprocs (x-axis), n f ields (columns), and size (rows) for the

second test.

containing the fields needed by the three consumers are created

and sent separately to the corresponding consumer. We built

three different messages because each consumer requires a

different subset of the original data model.

Figure 4 presents the average processing time of a put for

a total of 1,000 iterations as a function of the number of

processors nprocs (x-axis), the number of exchanged fields

n f ields (columns), and the size of each field size (rows) for

the second test.

We observe that none outperforms auto only for n f ields =
1. For this configuration, no filtering is needed; therefore

filtering comes as an extra unnecessary cost. When more fields

are in the messages than are required by the consumer, the

time spent in put without filtering increases because of the

time spent to serialize and send these unnecessary data. For

n f ields = 5, auto is on average 4.2 times faster than none and

8.2 times faster for n f ields = 10.

The performance of manual and auto are close for all

configurations tested. On average, we observe a 2% slowdown

of auto compared with manual. This slowdown is due to the

extra cost of the filtering function during the put for automatic

filtering. This result shows that our automatic data filtering

can achieve performance similar to that of manual filtering

without the need for the developer to write custom code.

Alternatively, the user can define contracts for only a subset

of tasks requiring data filtering.

C. Molecular dynamics

We now test the performance of message filtering with

Gromacs [6], a molecular dynamics parallel simulation

Fig. 5: Workflow graph of the experiments with Gromacs.

The dashed-line rectangles correspond to the lists of fields

transiting in each dataflow.

application, coupled to three in situ analysis tasks requiring

different data generated by the simulation. We measured the

impact on the performance of the simulation in terms of its

slowdown due to the coupling of the simulation with in situ

analyses. We tested three different modes to send the data,

which are the same as for the second test: automatic message

filtering performed by Decaf, auto; manual filtering directly

in the Gromacs code, manual; and no message filtering, none.

We define our workflow with one producer task, Gromacs,

and three consumer tasks. Figure 5 summarizes the workflow

and shows the matching lists computed for each dataflow.

The producer sends every 100 simulation iterations a message

containing four different fields: id, position, velocity and

f orce. These fields corresponds respectively to arrays of atom

indexes, positions, velocities, and forces.

The first consumer is an analysis task computing a 3D

density grid of the atoms based on their position, which

is used for visualization. The task requires four fields: the

index, position, a morton code [25] of each atom, and a data

field representing the domain block that contains these atoms.

To include the fields morton code and domain block in the

message, we create a link between Gromacs and this consumer

that will compute and add these two fields in the message. The

second consumer is similar except that it computes a 3D grid

in which each cell contain the sum of the forces applied to

each of the atoms belonging to the cell. The third consumer

is a task computing a histogram of atom velocities and thus

requires only the field velocity.

The integration of Decaf within the source code of Gromacs

to send the four fields took about 150 lines of code, with no

modification required for the contracts. The manual filtering

of the fields with the creation of one specific message for

each consumer required about 20 extra lines of code.

We measured the execution time of Gromacs iterations and

calls to put of Decaf during 200,000 simulation iterations,

which corresponds to at least 5 minutes of computation time

for each instance. Scientists usually save the data produced by
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Fig. 6: Percentage of time spent in put over simulation time

of Gromacs, as a function of the number of processes (x-axis)

and the number of iterations between two outputs (columns),

for the three instances.

the simulation every 5,000 iterations, or even less, because of

the costly synchronous I/O of Gromacs. Because Decaf com-

munications are asynchronous, we can afford to output data

every 100 simulation iterations without slowing the simulation

noticeably [5]. We also ran the experiments with an output of

the data every 10 simulation iterations.

We ran the experiments with up to 224 cores (16 nodes,

14 cores out of 16 per node) dedicated to Gromacs.

Experimentally we found that increasing the number of cores

further did not improve the simulation performance (no

I/O) for this molecular model. The two remaining cores per

simulation node were dedicated to the links that transform

the data for the analytics computing 3D grids. We used 3

dedicated nodes for the analytics: one node per consumer

task and 4 cores per node.

Figure 6 shows the ratio of time spent in the put function

over the running time of the simulation. We see that none is

outperformed by the two other instances because of the cost of

serializing and sending the unnecessary data fields. The time

spent in put by none is 5.75 times longer than for auto for

an output of data every 100 simulation iterations at 224 cores,

and 1.75 times longer for an output every 10 iterations.

Filtering data decreases the amount of data sent over the

network, which can reduce the impact made on applications.

Figure 7 presents the frequency of Gromacs as a function of

the number of processes for Gromacs. We observe that the two

methods filtering messages outperform the method without

filtering: auto improves Gromacs frequency by 6% on 224

cores for an output every 100 iterations compared with none
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Fig. 7: Gromacs speed (number of iterations per second) as a

function of the number of processes (x-axis) and the number

of iterations between two outputs (columns), for the three

instances.

and by 63% for an output every 10 iterations.

The gain in performance for Gromacs is more significant

than the time saved during the Decaf put(). The reason

is that Gromacs is bounded by communications at scale.

Reducing the size of the messages sent over the network

reduces the contention over the network card, leaving more

room for Gromacs communications.

Comparing auto and manual, we observe that the perfor-

mance of the two methods is similar (less than 1% differ-

ence). We notice also that the ratio of time spent in put

compared with the total simulation time is on average 5%

smaller for manual, which corresponds to the overhead of

the f ilterMessage function since the simulation times are

similar for the two instances. These results are consistent

with the results of Section V-B and show that our automatic

message filtering is competitive with manual filtering in a real

scientific scenario, avoiding the need for the user to modify the

simulation code for each analysis workflow. Improving the I/O

performance by filtering messages also enables scientists to

output data more frequently for comparable simulation impact

and improve the time resolution of their analysis. In other

words, the contract mechanism allows Decaf to obtain better

performance by automatically filtering the content of the mes-

sages without requiring any modifications of the application

from the users.

VI. CONCLUSION

We introduced contracts for in situ task communications. A

contract specifies for a producer each data field available for

output and for a consumer the data fields needed for input.

We proposed a contracting mechanism to automatically select
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which data fields to send from a producer to a consumer.

We extended this mechanism to incorporate data operators

found on the I/O path of several in situ infrastructures able

to transform data between a producer and a consumer.

We integrated our mechanism of contracts within Decaf, a

middleware for building and executing in situ workflows. We

showed that our automatic filtering comes at little cost while

providing performance comparable to that of manual filtering.

We demonstrated that our contract mechanism removes the

need for developers to specialize their tasks for a particular

workflow.

We plan to introduce the declaration of contracts at runtime

to allow the creation of new connections of tasks. We also

plan to implement our contract mechanism in two other in

situ middlewares: FlowVR and EVPath.
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