2014 14th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing

A Flexible Framework for Asynchronous In Situ and In Transit Analytics for
Scientific Simulations

Matthieu Dreher
INRIA - LIG
Montbonnot, France
matthieu.dreher@inria.fr

Abstract—High performance computing systems are today
composed of tens of thousands of processors and deep memory
hierarchies. The next generation of machines will further
increase the unbalance between I/O capabilities and processing
power. To reduce the pressure on I/Os, the in situ analytics
paradigm proposes to process the data as closely as possible
to where and when the data are produced. Processing can be
embedded in the simulation code, executed asynchronously on
helper cores on the same nodes, or performed in transit on
staging nodes dedicated to analytics. Today, software environ-
nements as well as usage scenarios still need to be investigated
before in situ analytics become a standard practice.

In this paper we introduce a framework for designing,
deploying and executing in situ scenarios. Based on a com-
ponent model, the scientist designs analytics workflows by first
developing processing components that are next assembled in
a dataflow graph through a Python script. At runtime the
graph is instantiated according to the execution context, the
framework taking care of deploying the application on the
target architecture and coordinating the analytics workflows
with the simulation execution. Component coordination, zero-
copy intra-node communications or inter-nodes data transfers
rely on per-node distributed daemons.

We evaluate various scenarios performing in situ and in
transit analytics on large molecular dynamics systems sim-
ulated with Gromacs using up to 2048 cores. We show in
particular that analytics processing can be performed on the
fraction of resources the simulation does not use well, resulting
in a limited impact on the simulation performance (less than
9%). Our more advanced scenario combines in situ and in
transit processing to compute a molecular surface based on
the Quicksurf algorithm.

Keywords-In Situ Analytics and Visualization; 10; Molecular
Dynamics;

I. INTRODUCTION

The ever growing amount of data produced by parallel
numerical simulations calls for new practices to reduce
the pressure on I/Os. For instance, the complete chemical
structure of the capsid of the HIV-1 virus has recently been
resolved [1]. The molecular model has a total of 64 millions
atoms. To simulate this model, scientists used the Blue Water
supercomputer, the simulation producing about 10To per run
of 100 nanoseconds of simulated time, which makes the
analysis of the trajectory very difficult.

978-1-4799-2784-5/14 $31.00 © 2014 IEEE
DOI 10.1109/CCGrid.2014.92

271

Bruno Raffin
INRIA - LIG
Montbonnot, France
bruno.raffin@inria.fr

Instead of saving raw data to disks for further post-
processing, the in situ analytics paradigm proposes to per-
form data processing as closely as possible to where and
when the data are produced [2]. The goal is first to reduce
the amount of data to be transfered and stored, but also
to parallelize analytics on the large supercomputer booked
for the simulation. This approach also enables to get a live
feedback on the current simulation state, and, if necessary,
to take early measures to stop the simulation or change some
parameters [3].

These processing workflows being interleaved with the
simulation, the ease of use, flexibility as well as the overall
performance impact must be carefully considered. We can
distinguish different mappings for analytics, adopting the
vocable of [4]: in situ embedded in the simulation code,
or running asynchronously on the same nodes but often
on dedicated helper cores; in transit on staging nodes
dedicated to analytics; or more classically once data have
been saved to disk. Depending on the application domain
and the analytics algorithms, the needs can range from
simple filtering schemes, for instance removing the water
atoms before saving a time step of a molecular dynamics
simulation, up to producing high quality images [2].

Our contribution is a framework for designing, deploy-
ing and executing in situ and in transit data-flows. Our
framework goal is twofold: to be flexible and yet perfor-
mant. Based on a component model, the scientist designs
analytics workflows by first developing processing compo-
nents that are next assembled in a dataflow graph through
a Python script. Relying on a full blown programming
language enables to develop complex parametrizable, thus
reusable, parallel patterns, like NxM data distribution or
MapReduce. Complex graphs can thus be specified in a
compact way. At runtime the graph is instantiated according
to the execution context, the framework taking care of
deploying the application on the target architecture, and of
coordinating the analytics workflows with the simulation
execution. The numerical simulation is seen as a collection
of distributed components (one component per process). The
runtime systems relies on daemons (one per node) in charge
of managing shared memory segments used to exchange

@) CO‘ pute
1(!) I
& SOCIety

data (without copies) between the components local to a
given node, and to trigger data transfers to distant nodes
when required. We designed this software layer to be as
thin as possible, to give the user a high level of control
on its application behavior and to limit intrusion when
encapsulating existing codes into components, like parallel
simulation codes or analytics libraries.

The performance is evaluated with Gromacs [5], a popular
paralle]l molecular dynamics simulation software. We aug-
mented Gromacs with in situ and in transit filters. Various
scenarios are tested from simple file writes to computing a
surface skin of the simulated molecular system, based on
the Quicksurf algorithm [6] both in situ and in transit. We
show that using up to 2048 cores our various scenarios have
only a limited impact on the simulation (less than 9%).

After discussing related work (Sec. II), we present
our framework (Sec. III), before to detail some scenar-
ios (Sec. IV) and the associated performance evaluation
(Sec. V). A conclusion closes the paper (Sec. VI).

II. RELATED WORK

We discuss related approaches according to the locus of
analytics processing.

The most direct way to perform in situ analytics is to
inline computations directly in the simulation code. This is
the approach adopted in [2] as well as for the standard visu-
alization tools like Paraview and Visit [7], [8]. In this case,
in situ processing is directly accounted in the simulation
time. This approach could enable to share data structures,
but often simulation and visualization tools rely on their own
specific formats [9].

To reduce the cost of in situ analytics on the simulation,
several works propose to dedicate one or several cores
per node, called helper cores, to analytics. The simulation
responsibility is simply to handle a copy of the relevant
data to the node-local analytics processes, usually through a
shared memory segment, both codes being executed concur-
rently. This approach also limits analytics intrusion in the
simulation code. Damaris[10], Functional Partitioning[11],
GePSeA[12] or Active Buffer[13] adopt this solution. Even
if the in situ processing simply consists in saving data to
disks, this approach can be more efficient than to rely on
standard I/O libraries like MPI 1/0 [10].

In situ is well adapted for computations that conform
with the data distribution imposed by the simulation, thus
avoiding inter-node transfers. If intensive data transfers are
required, it may be more efficient to offload these compu-
tations from the simulation nodes towards extra dedicated
nodes, usually called staging nodes. These computations are
said to be performed in transit. HDF5/DMS [14] uses the
HDFS5 interface and a virtual file driver to expose a virtual
file to staging nodes. GLEAN [15] proposes a Map/Reduce
approach to analyse molecular dynamic simulations.

278

Several systems use staging nodes to expose the sim-
ulation data to other scientific workflows [16], [17].
DataSpaces[18] stores the simulation data on staging nodes
with a spatially coherent layout and acts as a server to client
applications.

A few frameworks support both in situ and in transit
processing. JITStaging [19] and PreData [20] propose to
extract data from the simulation, apply a first in situ treat-
ment with simple stateless codes, then transfer the data
to staging nodes. Bennett et al. [21] solution is build on
top of DataSpaces and Dart[22] to perform in situ and in
transit visualization and analytics. ADIOS [23] is emerging
as a standard I/O interface to describe the simulation data
that may need to be read, written, processed outside of
the simulation. An XML configuration file specifies how
the data are actually handled, relying on various extensions
ranging from standard I/O libraries like MPI I/O up to
visualization libraries. FlexIO [24] brings to ADIOS in situ
and in transit processing capabilities. FlexIO uses shared
memory segments to handle data to asynchronous node-
local in situ processes and RDMA transport methods for
inter-node transfers, in particular to staging nodes. Specific
stateless codelets can be dynamically moved on different
cores during the simulation. For NxM like data redistribu-
tions, FlexIO relies on centralized coordinators that gather
information about data and process distribution, compute the
communication pattern and send back the necessary instruc-
tions to each process involved. This handshaking process can
be totally or partly bypassed if the data distribution does not
need to be recomputed in between consecutive steps. Zheng
et al. [24] also propose several heuristics to compute process
to core mappings and optimize the use of helper cores and
staging nodes.

In situ and in transit computing can be seen as some form
of parallel code coupling. The Common Component Archi-
tecture (CCA)[25] defines a component model tailored for
coupling scientific applications. Several software libraries
adopted this model like Intercomm[26], Meta-Chaos[27] or
PAWS[28]. XChange[29] pushes the concept of CCA by
adding the possibility to apply data transformation during
transferts between simulation codes. Zhang et al.[30] added
a shared memory space to a Dart server to support both
simulation code coupling and in situ/in transit scenarios. The
user describes groups of parallel codes called bundles and
creates a workflow between these bundles. Based on MPI,
the framework requires that all bundles be integrated in the
same MPI application, which can require significant coding
efforts.

Our contribution is a framework supporting asynchronous
in situ and in transit processing by combining the component
oriented and data-flow approaches. The level of abstraction
proposed lead to a comprehensive and flexible environment,
while having a thin software layer to let the user keep a
good understanding of the application behavior.

III. PROGRAMMING MODEL AND RUNTIME

We describe in the following the main features of the pro-
gramming model and runtime. Our framework relies on the
FlowVR middleware [31] retargeted for in-situ processing.

An application is described as a dataflow graph where
edges are communication channels and vertices, called mod-
ules, are codes processing data received on input channels
and producing results sent on output channels.

A. Module

A module is a process or thread running an infinite loop.
A module has input and output ports it relies on to send
and receive messages in the FlowVR world. A module has
no further view of the application. This componentization
enables to reuse the same modules in different graphs
without having to recompile them.

The API to turn a code into a module relies on three main
functions:

e Wait() : blocking operation. Suspend the module until
all its connected input ports have at least one message
available.

Get() : Get the oldest message from the queue attached
to an input port (non blocking)

e Put() : Send a message to an output port (non blocking).
For flexibility, an input port can also be declared non-
blocking. In this case, a get call on this port can return a
null value if no message is available. These ports are usually
used for low frequency message streams, for controlling the
module configuration for instance.

This API is kept simple to minimize the refactoring
necessary to transform a code into a module. Modules can
be created in C, C++, Python and Fortran. They can defer
computations to local accelerators (GPU or Intel Phi for
instance). FlowVR does not impose a new launching com-
mand when turning into modules the processes or threads
of an existing application. It simply needs to have the native
launching command forward a couple of FlowVR specific
environment variables. If several modules are started from
the same command line, they get different ids, either using
a rank assigned by FlowVR or inheriting the rank the native
launching command assigns (for instance the MPI rank given
by mpirun).

B. Application Assembly

The user assembles his application through a Python
script. This consists in listing the modules involved and how
they connect their ports. An output port can be connected
to several input ports (for broadcasting). Loops are possible,
enabling for instance to set feedback channels to control
upstream message production, or to enable application steer-
ing. Tokens (special empty messages) will be released when
starting the application to unlock these cycles.

Because we rely on Python, complex parametrized pat-
terns can be programmed in a compact way and reused

279

#Parallel simulation
mySimulation Simulation ("mySimulation”,
cores simulationCores)

hostsSimulation ,

#Parallel mapper (one process per node)
myMapper Mapper (”myMapper”, hostsNode ,
cores dedicatedCores)

#Visualizer on a dedicated node
myRenderer Renderer ("myRenderer”,

hostsVisualization)
#Connect the k simulation processes per node
#to the local mapper filter.
make_partial_filter_tree (’treeLocalMerge’,
mySimulation. getPort(”out”),
myMapper. getPort(”in”),
arity len(hostsSimulation)/len (hostsNode),
node_class FilterMerge)

N—to—1 reduction tree from the mappers to visualizer
finalPort generateNtol (”TreeReduce”,
myMapper. getPort (”out”),

arity 8, node_class

= = myReducer)

Link to the visualizer
finalPort.link (myRenderer. getPort(”in”))

Figure 1. Python script to generate a N-to-1 MapReduce like pattern. The
script begins with the module specifications (their launching commands
and port interfaces), code omitted here for sake of conciseness. Next we
request to have the simulation running in parallel (k processes per node),
one mapper per node running simulation proceses and a single visualization
module on a different node. The data are merged a first time locally to
have one message per node (make_partial_filter_tree) using a FilterMerge
module. This message is forwarded to the mapper (myMapper) and the
result handled to a N-to-1 merge tree (generateNtol). At each node of the
tree, a module (type myReducer) applies the expected reduction operation
on the arity incoming messages. Finally, the result of the reduction is send
to the visualizer.

in different contexts. For instance we developed various
common parallel communication patterns like 1-to-N, N-to-
1 or N-to-N. The N-to-1 pattern takes as parameter an arity
and a type of merging module, to build a reduction tree.
The default merging module simply concatenates incoming
messages and forwards the result on its output, but more
specific modules can be developed and used for this N-to-
1 pattern. Figure-1 presents an exemple of N-to-1 Python
script for a MapReduce like data processing. Following the
same approach we implemented resampling patterns. The
simplest one is to put a specific module on the channel
just before the consumer input port. On request from the
consumer (backward link from consumer to sampler), the
sampler module forwards the newest message available and
discards all older messages. If no message is available it
forwards an empty message. More advanced patterns support
a coherent sampling for N producers. As for all other
patterns, the module implementing the default resampling
policy can be switched with a custom one. More advanced
patterns can be obtained by combining several base patterns.

The application is instantiated for a given target machine
by assigning modules to compute nodes and optionally to
also specify the cores where to pin them. The execution of
the Python script generates various XML files that list the

command lines to start the various modules, usually using
ssh or their native launcher, as well as a list of commands
for configuring each daemon (detailed in Sec. III-C). To run
the application, the user simply calls the flowvr command
with the application name. This command takes care of
coordinating module launchings and daemon settings.

Changing the Python script does not involve any change
or recompilation of the module codes. Various scenarios
can thus be easily experimented, for instance changing the
computations performed by switching some modules, or
testing different analytics placements on in situ or in transit
nodes.

C. Daemon

Because modules ignore who and where their neighbors
are, we need external entities to implement the data transfers
and coordination logic. For that purpose FlowVR requires
to have one daemon running per node, similarly to Hy-
bridDart [30]. A daemon is a multithreaded process that
fills an action table and loads plugins according to the
application configuration. The action table lists the action to
trigger upon message notification for each potential message
source. A typical action consists in forwarding a message to
a local module or to the transport plugin if the destination
module runs on a distant node. The daemon manages shared
memory segments where all local messages are stored. It
is responsible to allocate and free shared memory. Smart
pointers are used to point to messages, which are destroyed
when the reference count reaches zero. Intra-node com-
munications consists in handling to the destination module
a pointer on the message, thus avoiding memory copies.
Inter-node communications are implemented by dedicated
plugins. FlowVR default transport plugin relies on TCP/IP,
ensuring a wide portability. For in situ applications we
developed a MPI based plugin to better take benefit of
high performance networks like Infiniband. For each local
module the daemon loads one threaded regulator plugin
in charge of the dialog with that module. The regulator is
responsible for unlocking the module upon wait() calls, to
provide pointers to incoming messages upon get() calls and
to handle outgoing messages over put() calls.

D. Message Handling

In opposite to other frameworks like FlexIO, FlowVR
offers a direct access to the shared memory. A module can
thus work within the shared memory buffer, rather than
copying the data once ready and just before to send the
message, saving one copy. Once the put() call occurs, the
buffer becomes read only for the producer but also for all
receivers. Indeed, when a message is sent to several modules
in the same node, all receivers have access to the same
message. This mechanism avoids to have multiple copies
of the same message.

280

FlowVR does not provide specific interfaces for handling
structured data like Adios. We expect users to develop their
own library according to their needs. This also avoids to
mask too complex behaviors that can impair some context
specific optimizations or reveal difficult to debug when not
behaving as expecting.

To mitigate the cost of memory allocation, the daemon
supports a bufferpool mechanism. When a module requests
a shared memory allocation, the deamon tries to reuse an
unused, already allocated and large enough buffer. An other
important mechanism to save memory allocations and copies
is the ability to concatenante incoming messages by chaining
them rather than copying them to build a new message.
This mechanism is particularly useful when, at node level,
we need to concatenate the messages from the various
simulation processes before in situ or in transit processing.
If such message needs to be sent over the network, the
transport protocol is free to transmit it untouched or to
compact it for efficiency purpose.

A FlowVR message is composed of a list of stamps and
a data payload. The stamps are metadata attached to the
message. Some are system defined like the rank of the mes-
sage in the communication channel, or can be user defined,
like a bounding box. The stamp list can be routed without
the payload by simply connecting an output port with a
specific stamp-only link when assembling the application.
This enables for instance to gather the stamps to a decision
maker module that works only with stamps, the execution
of the decision being implemented by other modules. This
is a feature used to implement the N consumers sampling
pattern for instance.

E. Monitoring

It is important to provide tools to assist the user in under-
standing the behavior of his application. FlowVR provides
two main ways to monitor performance. A per node top-like
interface shows online various module data like its update
frequency or the size of message queues for each input port.
FlowVR also integrates a trace capture mechanism, with pre-
set events and the possibility to add user specific events.
A timeline visualization utility shows for each module the
wait() and active periods as well as all data movements
between modules. FlowVR also comes with a graphical
tool displaying a visual 2D representation of the application
graph the Python scrip describes.

IV. LIVE PROCESSING SCENARIOS

In this section we highlight how to couple existing codes,
like simulation or analytics codes, within our framework and
how to derive various scenarios and pipeline constructions.
We focus on adding in situ capabilities to a molecular
dynamic simulation running with Gromacs [32].

A. Code Coupling

Instrumenting an iterative numerical simulation usually
proves an easy task with FlowVR. First, a FlowVR wait()
must be integrated in the simulation loop. Next, the data
to be extracted from the simulation are copied inside a
FlowVR message and the message availability notified to the
FlowVR daemon through a call to put(). The data can also be
packed in several messages to be sent on different ports if,
for instance, different data need to be extracted at different
frequencies or processed through different pipelines. Most
of other systems like ADIOS or Damaris follow similar
schemes, requiring only minor modifications to the simula-
tion codes. Note that for steering purposes, input ports can
also be created to retrieve data used to change the application
internal parameters.

In the case of Gromacs, we instrumented each MPI
process, building the messages outside of OpenMP parallel
regions to ensure the data integrity if Gromacs is launched
with an hybrid OpenMP and MPI parallelization. It is though
possible to further optimize this code, for instance having
each OpenMP thread writing in parallel in the message. We
also set an input port to impose external forces to a selection
of atoms. This was used to interactively steer a system with
an haptic device for a small scale simulation [33]. But a port
is inoperative as long as not linked to an other module: the
wait() does not block on this port and a ge#() call simply
returns a null value. Thus, ports can be set even if not used,
enabling different scenarios without requiring to recompile
the application.

To connect traditional post-process analytics codes to our
pipeline, we added a new file format able to receive and
send FlowVR messages. The FlowVR module interface fits
well the usual file I/O interface :

« open() : initialize the module with an input (respectively
output) port if the file is opened for reading (resp.
writing).

read() : do a get()

write(): do a put()

close(): close the module.

ADIOS has adopted the same correspondance with its stream
interface. Developers can thus easily integrate legacy an-
alytics codes in their pipeline. Such analytics codes are
often sequential, at best multithreaded. They are thus usually
mapped on staging nodes connected to an incoming N-to-1
merging pattern gathering the data from the simulation. If
the reached performance is too limited, such codes can be
parallelized later to run on several in transit or in situ nodes.

We integrated the Gromacs analyze tools and the Python
library MDAnalysis [34] inside our framework following the
interface we just described. Both tools are sequential and
expect as entry the atom positions of a full time step. It is
then necessary to merge all the atoms positions, sort them
according to their atom ID and finally remove all the IDs to

281

provide the analysis modules only the ordered atom positions
as if they were extracted from a standard trajectory file.

A very simple parallelism can be set up without modifying
anything more than the Python script. If an analysis takes
longer than the time between two output steps, we can
simply set a module to cyclically distribute the incoming
messages to multiple instances of the analytics module. The
produced results are then reordered by an other module
before being forwarded downstream.

B. Quicksurf

@' Atom positions
ComputeMorton

r _@_ _&_ . @ Morton codes

| Redistribution (a) :
b v il

@ @ @ Grid structure
@ Density grid

ComputeGrid
B Triangle mesh

TEE

I Redistribution (b) |
JEE
ComputeDensity

HEEE

| Redistribution (0 ;

Marching Cube

l Rooterl lRocterl l Rooterl l Rooter | |

I 17

Figure 2. Quicksurf pipe-line (top). Redistribution takes place only at
one level (a,b or ¢) depending on the adopted strategy. The redistribution
component (bottom) is made of rooter and merger modules. The rooters
split incoming data according to the adopted domain decomposition. The
mergers gather the different data received from rooters.

We now highlight the possibility of in situ and in transit
scenarios with our framework through the live extraction of
a molecule surface. The considered algorithm, called Quick-
surf [6], operates in three main steps. First, the atoms are
sorted according to their location in a 3D density grid. Next,

Figure 3.

Quicksurf with atom redistribution (strategy (a) in Figure-2). Domain decomposition used to route the atoms (left). Atoms at side regions are

duplicated to keep the futur calculations coherent without needs for exchanging extra data later on. The molecule is mapped to a grid and the density is
computed for each cell (center). A marching cube is performed to extract the Quicksurf representing the surface of the molecule. Finally the local meshes

are merged to obtain a global 3D model (right).

a density value is computed for each grid cell according
to the cumulated Gaussian weight of all particules present
in the cell and its 26 neighbors. Finally, the surface mesh
is extracted running the classical marching cube algorithm.
This mesh is expansive to compute for large systems on a
single machine even with a high end GPU [6]. But once
computed, it is usually significantly smaller than the source
data set. The mesh can easily be stored or forwarded to the
scientist office and rendered interactively on a PC with a
descent GPU.

Notice that in several in-situ visualization papers, like. [2],
the authors propose to render in situ images from the
simulation data. But having only a few images per time step
is of very limited use for molecular dynamics where users
generally want to freely observe the structure from different
points of view. Producing instead a mesh per time step offers
this possibility.

The parallel Quicksurf algorithm we propose here exhibit
two main steps. Computations take first place on the local
nodes inheriting from the data distribution adopted by the
parallel simulation. Next partial results are redistributed
either to in-situ nodes or to staging nodes to finalize the
extraction of the Quicksurf mesh. The distribution can take
place at three different levels as detailed in Figure-3). We
detail here the algorithm adopting the distribution strategy
(c), the other strategies being discussed at the end of the
section.

We first perform live computations with only the data
locally available on each node running simulation processes.
A first module aggregates the atom positions provided by
each MPI process running on the node into one single
message (message chaining - no copy). The next module
gets this message (pointer - no copy) and computes a Morton
index for each atom. The atoms are then sorted according
to their Morton indices. The module forwards the atom
positions and Morton indices (no copy) to the next module.
This third one creates a 3D grid and stores for each cell the

282

start and end index of the atoms contained in this cell (end
index equal to zero for empty cells). Because the grid size
is reduced (about 20MB in our experiments for the global
grid), we can afford to store empty cells. For larger grids
we would benefit from keeping only non empty cells and
rely on a binary search to find a given cell. Eventually atom
positions, Morton indices and the 3D grid are forwarded
(still no copy) to a fourth module that computes the cell
densities based on the atom present in the 27 neighbors.
We get here partial densities as the cells may contain other
atoms that are not visible at this point (atoms simulated
on other nodes). We then redistribute these partial densities
(network data transfers) towards M modules (distribution (c)
in Figure-3) to recompose (sum) the final densities. Finally
the local density grid is send (no copy) to a marching cube
module that generates a mesh of the surface molecule for the
cells it owns. The produced triangles are then gathered on
a single node with a N-to-1 communication pattern before
being saved and/or rendered.

In this case we exchange the partial density grids and next
sum the densities when they reach their final destination. For
large values of N and M we could get better performance by
relying on algorithms that combine the redistribution pattern
with the density summation, like the binary swap or 2-3
swap [35].

We could perform data redistribution earlier, either just
once the atom gets their Morton index (Figure-3), or once
atoms are sorted according to the cell they belong to (Figure-
2 top). The redistribution component (Figure-2 bottom) re-
quires inter-node data transfers to combine the data obtained
on each of the N simulation nodes. A first module (N in-
stances, one per node), the rooter, gets the locally computed
Morton indices and the atom positions, the grid and/or the
partial densities. It is responsible to redistribute the data to M
entities based on a gird decomposition including a layer of
ghost cells or atoms to ensure the next computation steps can
occur without any further communications. The rooter and

merger components were designed with multiple ports for
various data types (non connected ports are inactive in the
FlowVR model). This enable us to test the three distribution
strategies without the need to recompile anything.

In-situ processes are executed on one helper core. Instead
we could first process the data locally on each core before
to gather and merge the results. This exhibit more paral-
lelism and may save some memory transfers. Conversely,
the simulation processes needs to compete with the in-situ
processes running on the same core to use the local resources
(CPU, cache, memory bandwidth), leading to performance
degradations. Such approach usually proves less efficient
than relying on dedicated helper cores [24].

From this pattern we can derive several placements. All
steps could be performed in-situ, having the final mesh
gathered on a single staging node. But the communications
triggered by the distribution could affect the simulation
performance. An other option is to rely on staging nodes for
combining the partial densities, or if the work load left is still
too important for in-situ nodes, transfer the data to staging
nodes at an earlier step. All these different scenarios just
require to adjust the Python script. No module compilation is
required. Various of these placement strategies are evaluated
in Section. V.

V. EXPERIMENTS

A. Experimental Context

The experiments ran on Froggy, a 138 compute nodes
cluster from the Ciment infrastructure. Each compute node
is equipped with 2 eight cores processors Sandy Bridge-
EP E5-2670 at 2.6 GHz, 64GB of memory. Nodes are
interconnected through a FDR Infiniband network. FlowVR
2.1 and Gromacs 4.6 are compiled with Intel MPI 4.1.0. For
all experiments Gromacs runs a Martini simulation with a
patch of 54000 lipids representing about 2100000 particles
in coarse grain[36] (simulation of atom aggregates).

B. Writing Scenario

We first benchmark Gromacs with and without IOs and
comparable data saving patterns handled through FlowVR.

Gromacs natively uses a master-slave approach to write
the results to disk. At each output step, all the atoms are
gathered synchronously to the master through MPI commu-
nications before to writes the data in one file. During this
step, the simulation is blocked, which can significantly affect
the performance and force scientists to reduce the output
frequency. Notice also that in opposite to many numerical
simulations, Gromacs runs at a very high frequency ranging
from 150 to 1060 Hz. It is classical that biologists save data
only every 5000 iterations or even significantly less. Here
we voluntarily stress the system to make the overheads more
visible and save atom positions every 100 iteration. Gromacs
dynamically balances its work load based on performance
measurements. This process can create important frequency

283

Writing performances of Gromacs

1200
[| gromacs-0-15cores

=
I M gromacs-0-16cores
2 200 gromacs-100-15cores
§ M gromacs-100-16cores
g 600 W write-hadfS-local
“u-, M exaviz-full-100-15cores
3
g a0
2
o

0

16 32 64 128
Nodes
Figure 4. Gromacs frequency when running with various data saving

patterns and number of cores.

jitters for the first 1000 steps. We thus start the timings at
the 2000th frame up to the end of the simulation to avoid
the perturbations from the initialization phase. We ran the
simulations for Smin representing at least 20000 steps.

Figure-4 shows Gromacs running frequency for vari-
ous configurations. The curve Gromacs-0-16cores (resp.
Gromacs-0-15cores) gives the performance of Gromacs run-
ning on all the 16 cores available per node (resp. 15 cores)
and without performing any 10. These set the performance
upper bounds we should try to stay close to when activating
data saving. When Gromacs writes to disk the atom positions
every 100 steps the performance drops significantly (curve
Gromacs-100-16c¢cores).

Next we use FlowVR to gather all data on one helper
core per node and locally write one file per node in HDF5
format (curve write-hdf5-local). The simulation runs on 15
cores per node and the FlowVR processes (daemon, merge
and writer modules) are hosted on a dedicated helper core.
At each output step, the atom positions are extracted from
the simulation, gathered on each node (no copy) with a
merge module and sent (no copy) to a node-local HDF5
writer module. The obtained numbers are very close to
Gromacs-0-15cores, 3.6% slower for 1920 cores, showing
the low overhead of the code instrumentation, efficiency of
the daemon for coordinating the modules and handling the
message transfers.

The last experiment reproduces Gromacs file writing pat-
tern with FlowVR (curve write-xtc-merge). Data are gathered
on the master node with a N-To-1 pattern and written
in an XTC file with the Gromacs trjconv tool modified
as described in section IV-A. Transferring the data asyn-
chronously enables to outperform Gromacs-100-16cores,
even though Gromacs uses less cores. Despite the transfer of
data, the performance is slightly impacted with a maximum
cost of 6.5%. This is made possible because of the good
Infiniband support provided by the MPI communication
layer and a fast network interconnection.

Notice that the helper core is never loaded beyond 10%
for all these experiments. Therefore, there are opportunities
to run extra in situ processings, like data filtering, to make

Gromacs performance with Quicksurf

1200 M gromacs-0-15cores

Tia‘ Il gromacs-0-16cores
: 900 quicksurf-C-intransit
H M quicksurf-C-insitu
@
a. B quicksurf-A-intransit

600
g
=
w
3
g 3w
g
Q

0
16 32 64 128
Nodes
Figure 5. Gromacs frequency when running concurrently with the

Quicksurf pipeline.

this core more profitable. As we are not using busy wait
in the daemon, the user is free to use these cores for
running external analytics codes, which may be part of the
global FlowVR application or not. Moreover, Gromacs has
difficulties to take fully benefits from the 16 cores motivating
the use of a dedicated core.

C. Live Quicksurf

We benchmark several placement strategies, in-situ and
in-transit schemes to compute a live Quicksurf based on
section IV-B scenarios. The water and ion particles are
filtered out in-situ to keep only the lipids. About 30% of
the atoms remain after this filtering step. At the end of the
pipeline, the partial meshes produced by the marching cube
modules are merged to a single visualization node.

Figure-5 compares three configurations with the base
Gromacs performances (Gromacs-0-15cores and Gromacs-
0-16¢cores).

The quicksurf-c-intransit scenario adopts the distribution
strategy (c) of Figure-2 with one helper core per simulation
node, and a NxM redistribution sending the data to staging
nodes . We use one extra staging nodes every 64 simulation
nodes. This strategy gives the best performance impacting
Gromacs performance decreases by at most 7% compared to
over Gromacs executed without I/0O, on N nodes at 15 cores
per node (Gromacs-0-15cores). This strategy is the lightest
regarding network traffic. The global grid represents only
700000 cells and only the non nul densities are sent to the
staging nodes.

The quicksurf-c-insitu scenario also relies on strategy (c)
but the redistribution is performed between the simulation
nodes (M = N). The impact on Gromacs is at most 8%
compared to Gromacs-0-15cores. This is higher than for
quicksurf-c-intransit but requires 1.5% less nodes (no stag-
ing nodes are used).

Finally, the quicksurf-a-intransit strategy gives a max-
imum cost of 8.6% compared to Gromacs-0-15cores. In
this case the atom positions are directly redistributed to the
staging nodes (M = N /64 staging nodes). The performance
impact is more significant than for quicksurf-c-intransit. This
overhead can be explained by the amount of data to transfer

284

(atom positions versus cell densities), which is at least 3
times larger. Even if this strategy is the slowest one, it has
the advantage of distributing the atom positions across the
staging nodes. These positions are the base data required by
a large variety of analysis. The range of possible analysis is
significantly more limited if only densities reach the staging
nodes as for the 2 other scenarios. This third scenario can
thus be more interesting depending on the user needs.

‘We choose not to place the redistribution component in (b)
since it generates more network traffic than in (a) whereas
the computational cost to generate the grid is relatively low
and can easily be computed after the redistribution.

D. Discussion

The molecular dynamics simulation we rely on departs
from the type of simulations usually used to benchmark
other in-situ frameworks like [24] or [37]. Molecular dy-
namics simulations are characterizer by high frequencies (up
to 1061Hz in our case) compared to simulations runnings in
between 1Hz and 1/20Hz. The amount of data produced at
each output step is inversely proportional to the frequency.
Our benchmark produces about 25MB per output step to be
compared to the 700 MB reported in [1]. If we normalize
the amount of data extracted per node we get a traffic of
2MB per node per second in our case (Gromacs running
at 1061Hz on 128 nodes and one output step every 100
steps). In[20], the GTC simulation running on 16,384 cores
(2048 nodes) produces 260GB every 2 minutes. It represents
a traffic of about IMB per node per second. Even if a direct
comparison is delicate given the very different contexts, we
can see that the extracted data exert a similar pressure on the
network bandwidth, but in our case at a higher frequency.

Finally, Gromacs uses a dynamic load-balancing system
that adapts the grid configuration at runtime. This prevents
us to use a priori data-aware redistribution on the simulation
nodes like in [30]. Even though the data redistribution
towards staging nodes is not impacted by this mechanism,
the full in-situ scenario could certainly take advantage of
this information.

VI. CONCLUSION

We introduced a dataflow oriented framework for in situ
and in transit analytics. Based on the FlowVR middleware,
our framework enables to support a large range of scenarios.
A Python script describes the assembly of the application,
offering the ability to program and reuse advanced patterns.
Often a new scenario can be experimented simply by updat-
ing the Python script, without module recompilation. The
runtime takes care of the application deployment, module
coordination and data exchanges, with various levels of
optimization. Because we tried to make FlowVR as inun-
trusive as possible (simple module API, direct access to
shared memory, module started with their native launching

commands), the user keeps a strong control and good
understanding of the application behavior.

Experiments with Gromacs molecular simulations paral-
lelized on up to 2048 cores, show that our framework enables
to concurrently perform analytics with a low impact on the
simulation (less than 9%).

So far, we rely on very basic mechanisms to keep the
simulation running when errors occur on the analytics pipe-
line. Future works include the integration of more advanced
fault tolerance mechanisms. On the performance side we
will investigate scheduling algorithms to let in-situ processes
communicate over the network when not used by the simula-
tion. We are also involved in a long-term collaboration with
computational biologists to test and develop new scenarios
and usages, so in situ processing can become part of their
standard software toolbox.

ACKNOWLEDGMENTS

This work was partly funded by the ANR, project
EXAVIS ANR-11-MONU-003. Most of the computations
presented in this paper were performed using the Froggy
platform of the CIMENT infrastructure (https://ciment.ujf-
grenoble.fr), supported by the Rhone-Alpes region (GRANT
CPERO07_13 CIRA) and the Equip@Meso project (reference
ANR-10-EQPX-29-01) of the programme Investissements
d’Avenir supervised by the ANR. We thank Jeremy Jaus-
saud, INRIA, and Pierre Neyron, CNRS, for their helpful
inputs and contributions. We thank Philip Fowler, University
of Oxford, for his expertise on Gromacs scalability.

REFERENCES

[1] G. Zhao, J. R. Perilla, E. L. Yufenyuy, X. Meng, B. Chen,
J. Ning, J. Ahn, A. M. Gronenborn, K. Schulten, and
C. Aiken, “Mature HIV-1 Capsid Structure by Cryo-electron
Microscopy and All-Atom Molecular Dynamics,” pp. 643—
646, 2013.

[2] H. Yu, C. Wang, R. Grout, J. Chen, and K.-L. Ma, “In
situ visualization for large-scale combustion simulations,”
Computer Graphics and Applications, IEEE, vol. 30, no. 3,

pp. 45-57, 2010.

[3] W. Gu, G. Eisenhauer, K. Schwan, and J. Vetter, “Falcon:
On-line monitoring for steering parallel programs,” in In
Ninth International Conference on Parallel and Distributed

Computing and Systems (PDCS’97), 1998, pp. 699-736.

[4] J. C. Bennett, H. Abbasi, P.-T. Bremer, R. Grout, A. Gyulassy,
T. Jin, S. Klasky, H. Kolla, M. Parashar, V. Pascucci, P. Pebay,
D. Thompson, H. Yu, F. Zhang, and J. Chen, “Combining
in-situ and in-transit processing to enable extreme-scale sci-
entific analysis,” in nternational Conference on High Perfor-
mance Computing, Networking, Storage and Analysis. 1EEE

Computer Society Press, 2012, pp. 49:1-49:9.

285

[5] S. Pronk, S. Pall, R. Schulz, P. Larsson, P. Bjelkmar, R. Apos-
tolov, M. R. Shirts, J. C. Smith, P. M. Kasson, D. van der
Spoel, B. Hess, and E. Lindahl, “Gromacs 4.5: a high-
throughput and highly parallel open source molecular sim-
ulation toolkit,” Bioinformatics, vol. 29, no. 7, pp. 845-854,
2013.

[6] M. Krone, J. E. Stone, T. Ertl, and K. Schulten, “Fast

Visualization of Gaussian Density Surfaces for Molecular

Dynamics and Particle System Trajectories,” in EuroVis 2012

Short Papers, vol. 1, 2012, pp. 67-71.

[7] N. Fabian, K. Moreland, D. Thompson, A. Bauer, P. Mar-

ion, B. Geveci, M. Rasquin, and K. Jansen, “The Paraview

Coprocessing Library: A Scalable, General Purpose In Situ

Visualization Library,” in Large Data Analysis and Visualiza-

tion (LDAV), 2011 IEEE Symposium on, 2011, pp. 89-96.

[8] B. Whitlock, J. M. Favre, and J. S. Meredith, “Parallel In

Situ Coupling of Simulation with a Fully Featured Visual-

ization System,” in /1th Eurographics conference on Parallel

Graphics and Visualization, 2011, pp. 101-109.

[9] benjamin Lorendeau, Y. Fournier, and A. Ribes, “In Situ vi-

sualization in fluid mechanics using Catalyst: a case study for

Code_Saturne,” in IEEE Symposium on Large Data Analysis

and Visualization (LDAV), 2013.

[10] M. Dorier, G. Antoniu, F. Cappello, M. Snir, and L. Orf,

“Damaris: How to Efficiently Leverage Multicore Parallelism

to Achieve Scalable, Jitter-free 1/0,” in CLUSTER - IEEE

International Conference on Cluster Computing. 1EEE, Sep.

2012.

[11] M. Li, S. S. Vazhkudai, A. R. Butt, F. Meng, X. Ma, Y. Kim,

C. Engelmann, and G. Shipman, “Functional partitioning

to optimize end-to-end performance on many-core architec-

tures,” in International Conference for High Performance

Computing, Networking, Storage and Analysis, 2010, pp. 1-

12.

[12] A. Singh, P. Balaji, and W.-c. Feng, “GePSeA: A General-

Purpose Software Acceleration Framework for Lightweight

Task Offloading,” in International Conference on Parallel

Processing, 2009, pp. 261-268.

[13] X. Ma, J. Lee, and M. Winslett, “High-Level Buffering for

Hiding Periodic Output Cost in Scientific Simulations,” Par-

allel and Distributed Systems, IEEE Transactions on, vol. 17,

no. 3, pp. 193-204, 2006.

[14] J. Biddiscombe, J. Soumagne, G. Oger, D. Guibert, and J.-G.

Piccinali, “Parallel Computational Steering and Analysis for

HPC Applications using a ParaView Interface and the HDF5

DSM Virtual File Driver,” in Eurographics Symposium on

Parallel Graphics and Visualization, T. Kuhlen, R. Pajarola,

and K. Zhou, Eds., 2011, pp. 91-100, honourable Mention

Award.

[15] T. Tu, C. A. Rendleman, D. W. Borhani, R. O. Dror,

J. Gullingsrud, M. O. Jensen, J. L. Klepeis, P. Maragakis,

P. Miller, K. A. Stafford, and D. E. Shaw, “A Scalable Parallel

Framework for Analyzing Terascale Molecular Dynamics

Simulation Trajectories,” in Conference on Supercomputing,

2008, pp. 56:1-56:12.

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kessel-
man, G. Mehta, K. Vahi, G. B. Berriman, J. Good, A. Laity,
J. C. Jacob, and D. S. Katz, “Pegasus: A Framework for
Mapping Complex Scientific Workflows onto Distributed Sys-
tems,” Sci. Program., vol. 13, no. 3, pp. 219-237, Jul. 2005.

B. Ludischer, 1. Altintas, C. Berkley, D. Higgins, E. Jaeger,
M. Jones, E. A. Lee, J. Tao, and Y. Zhao, “Scientific Workflow
Management and the Kepler System: Research Articles,”
Concurr. Comput. : Pract. Exper., vol. 18, no. 10, pp. 1039-
1065, Aug. 2006.

C. Docan, M. Parashar, and S. Klasky, “DataSpaces: an Inter-
action and Coordination Framework forCoupled Simulation
Workflows,” Cluster Computing, vol. 15, no. 2, pp. 163-181,
2012.

H. Abbasi, G. Eisenhauer, M. Wolf, K. Schwan, and
S. Klasky, “Just in Time: Adding Value to the IO Pipelines of
High Performance Applications with JITStaging,” in Interna-

tional symposium on High performance distributed comput-
ing, 2011, pp. 27-36.

F. Zheng, H. Abbasi, C. Docan, J. Lofstead, Q. Liu, S. Klasky,
M. Parashar, N. Podhorszki, K. Schwan, and M. Wolf, “Pre-
DatA - Preparatory Data Analytics on Peta-Scale Machines,”
in Parallel Distributed Processing (IPDPS), 2010 IEEE In-
ternational Symposium on, 2010, pp. 1-12.

J. C. Bennett, H. Abbasi, P.-T. Bremer, R. Grout, A. Gyulassy,
T. Jin, S. Klasky, H. Kolla, M. Parashar, V. Pascucci, P. Pebay,
D. Thompson, H. Yu, F. Zhang, and J. Chen, “Combining
In-Situ and In-Transit Processing to Enable Extreme-Scale
Scientific Analysis,” in Conference on High Performance
Computing, Networking, Storage and Analysis, 2012, pp.
49:1-49:9.

C. Docan, M. Parashar, and S. Klasky, “Dart: a substrate for
high speed asynchronous data io0,” in /7th international sym-

posium on High performance distributed computing, 2008,
pp. 219-220.

J. F. Lofstead, S. Klasky, K. Schwan, N. Podhorszki, and
C. Jin, “Flexible io and integration for scientific codes
through the adaptable io system (adios),” in 6th international
workshop on Challenges of large applications in distributed
environments, 2008, pp. 15-24.

F. Zheng, H. Zou, G. Eisnhauer, K. Schwan, M. Wolf,
J. Dayal, T. A. Nguyen, J. Cao, H. Abbasi, S. Klasky,
N. Podhorszki, and H. Yu, “FlexIO: I/O middleware for
Location-Flexible Scientific Data Analytics,” in IPDPS’13,
2013.

F. Bertrand, R. Bramley, A. Sussman, D. E. Bernholdt, J. A.
Kohl, J. W. Larson, and K. B. Damevski, “Data Redistribution
and Remote Method Invocation in Paralle]l Component Archi-
tectures,” in 19th IEEE International Parallel and Distributed
Processing Symposium (IPDPS’05), 2005.

J.-Y. Lee and A. Sussman, “High Performance Communi-
cation Between Parallel Programs,” in International Parallel
and Distributed Processing Symposium (IPDPS’05), 2005.

286

[27]

(28]

[29]

[30]

[31]

(32]

[33]

[34]

(35]

G. Edjlali, A. Sussman, and J. H. Saltz, “Interoperability
of Data Parallel Runtime Libraries,” in /1th International
Symposium on Parallel Processing, 1997, pp. 451-459.

K. Keahey, “PAWS: Collective Interactions and Data Trans-
fers,” in High Performance Distributed Computing Confer-
ence, 2001, pp. 47-54.

H. Abbasi, M. Wolf, K. Schwan, G. Eisenhauer, and
A. Hilton, “XChange: Coupling Parallel Applications in a
Dynamic Environment,” in /[EEE International Conference on
Cluster Computing, 2004.

F. Zhang, C. Docan, M. Parashar, S. Klasky, N. Podhorszki,
and H. Abbasi, “Enabling In-situ Execution of Coupled
Scientific Workflow on Multi-core Platform,” in Parallel
Distributed Processing Symposium (IPDPS), 2012, pp. 1352—
1363.

J. Allard, J.-D. Lesage, and B. Raffin, “Modularity for Large
Virtual Reality Applications,” Presence: Teleoperators and
Virtual Environments, vol. 19, no. 2, pp. 142-162, April 2010.

B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl, “GRO-
MACS 4: Algorithms for Highly Efficient, Load-Balanced,
and Scalable Molecular Simulation,” Journal of Chemical
Theory and Computation, vol. 4, no. 3, pp. 435-447, 2008.

M. Dreher, P. Marc, T. Ahmed, C. Matthieu, M. Baaden,
N. Férey, S. Limet, B. Raffin, and S. Robert, “Interactive
Molecular Dynamics: Scaling up to Large Systems,” in Inter-
national Conference on Computational Science, ICCS 2013.
Elsevier, Jun. 2013.

N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and
O. Beckstein, “Mdanalysis: A toolkit for the analysis of
molecular dynamics simulations,” J. Comput. Chem., vol. 32,
pp- 2319-2327, 2011.

H. Yu, C. Wang, and K.-L. Ma, “Massively parallel volume
rendering using 2-3 swap image compositing,” in ACM/IEEE
conference on Supercomputing (SC’08), 2008, pp. 48:1-
48:11.

[36] [Online]. Available: http://philipwfowler.wordpress.com/2013/10/23/gromacs

(37]

4-6-scaling-of-a-very-large-coarse-grained-system/

M. Dorier, R. Sisneros, T. Peterka, G. Antoniu, and D. Se-
meraro, “Damaris/Viz: a Nonintrusive, Adaptable and User-
Friendly In Situ Visualization Framework,” in /IEEE Sympo-
sium on Large Data Analysis and Visualization (LDAV), 2013.

