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ABSTRACT

Today’s leadership computing facilities have enabled the execution
of transformative simulations at unprecedented scales. However,
analyzing the huge amount of output from these simulations re-
mains a challenge. Most analyses of this output is performed in
post-processing mode at the end of the simulation. The time to
read the output for the analysis can be significantly high due to
poor I/O bandwidth, which increases the end-to-end simulation-
analysis time. Simulation-time analysis can reduce this end-to-end
time. In this work, we present the scheduling of in-situ analysis as
a numerical optimization problem to maximize the number of on-
line analyses subject to resource constraints such as I/O bandwidth,
network bandwidth, rate of computation and available memory. We
demonstrate the effectiveness of our approach through two applica-
tion case studies on the IBM Blue Gene/Q system.
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1. INTRODUCTION

Computational science simulations have now scaled to millions
of cores and are able to better model higher resolution, higher fi-
delity and more complex physics in numerous domains including
cosmology, climate, and geoscience [17,18,21,22]. These simula-
tions are now producing large amounts of data, making analysis and
visualization of the simulation output essential for inferring mean-
ingful insight from the simulations. The traditional approach for
data processing for analysis and visualization in high-performance
computing (HPC) is a post-processing step where the data produced
by the simulations is first written out to the storage system, and is
then subsequently read from the storage system for analysis. A crit-
ical bottleneck facing the analysis of data produced by scientific
simulations on supercomputers, and hence scientific discovery, is
the performance of the storage system relative to the computing and
processing capabilities of these machines. The computing capabil-
ities of supercomputers have increased at least twenty-fold over the
past three years to meet the requirements of scientific applications,
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while the storage performance has only increased by a factor of two
to three times in the same time frame. This trend is expected to con-
tinue in future supercomputers. Also, post-processing enables only
the analysis of the saved simulation time steps, whose frequency
can be low depending on the resource characteristics [7,36]. This
prohibits analysis of the intermittent simulation time steps. There-
fore, there has been a steady paradigm shift from traditional post-
processing approach towards simulation-time analysis [7,36,39].

In HPC, the concept of simulation-time analysis, or processing
data at application execution time and in an application’s memory
for analytics and visualization tasks, is of paramount importance
to current and future generations of supercomputers. This over-
comes many of the bottlenecks associated with post-processing by
enabling analyses of data as the simulation is executing. This also
eliminates the requirement to write to and then read from storage
and the associated storage overheads. This capability enables sci-
entific simulations to perform various data analyses and visualiza-
tion tasks needed for scientific discovery and significantly mini-
mizes the data being written to storage. This reduces both the I/O
cost and the end-to-end simulation-analysis time, i.e. the time from
the start of the simulation to the end of the analysis. Furthermore,
simulation-time analysis can be performed at a higher temporal res-
olution than the simulation output frequency which is often decided
based on the I/O overheads [7,28]. Hence simulation-time analysis
not only mitigates the I/O cost but also enables a better understand-
ing of the simulated phenomena and “serendipitous discovery” [6].

There are two execution modes for simulation-time analysis de-
pending on how the analysis is coupled with the simulation. They
are (1) tightly coupled (in-situ) and (2) loosely coupled (co-analysis).
Tightly coupled analysis, commonly referred to as in-situ analysis,
is performed on the same resource and address space as the simu-
lation. In the second case, the simulation and analysis are typically
executed on different and dedicated resources and simulation data
is transferred over the network to the analysis resources [7].

As science teams are starting to adopt simulation-time analysis
in production scientific simulations and transitioning from the post-
processing mode, the primary questions and challenges faced by
users as they adopt simulation-time analysis in production science
codes are:

e What are the different analyses that can be performed during
simulation?

e Should the analysis be performed in-situ or in co-analysis
mode?

e How often should each analysis be performed?

e How often should the analysis store its output?



In some cases, the frequency of analysis is empirically deter-
mined by the user [7] and this might work well for specific simula-
tion configurations and scales. However, a solution to these ques-
tions depends on several factors including the memory, compute
and communication profiles of the simulation, as well as the charac-
teristics of each of the analyses over time, and the system resource
characteristics such as the available memory, network character-
istics and storage bandwidth. For example, if the analysis com-
putation time is small, it may be preferable to perform the analy-
sis in-situ, though this may slightly increase the simulation time.
In the case of memory-intensive simulations such as FLASH [13],
there may not be sufficient available memory to perform memory-
intensive temporal analysis. In the case of compute-intensive sim-
ulations such as CESM [20], users may not have many spare cy-
cles for analysis computations at simulation-time. Thus, different
simulation and analysis characteristics together with resource con-
straints need to be considered to answer the above questions.

In this work, we focus on the case of in-situ analysis alternating
with the simulation steps at an optimal frequency. Many simulation
codes such as the Large-scale Atomic/Molecular Massively Parallel
Simulator (LAMMPS) [33], HACC Cosmology [18], and the mul-
tiphysics multiscale FLASH simulation [38] have embedded code
for performing analysis at simulation time. It is convenient to ana-
lyze the simulation data in-situ because some of the data structures
required for analysis are already present in the simulation mem-
ory. For example, LAMMPS in-situ analysis code uses the particle
masses, coordinates, and velocities stored in the simulation mem-
ory to compute different properties, such as the radius of gyration
of a group of particles. The analyses use some of the simulation
data structures and hence the simulation is blocked during the anal-
ysis. However, some of the less compute-intensive in-situ analyses
can result in less than 0.1% overhead, since they can be executed at
the extreme scale of the simulation. Therefore, it is faster in some
cases to analyze in-situ than to transfer the simulation output and
auxiliary data structures to remote memory. Furthermore, future
architectures for leadership-class systems will introduce NVRAM-
based small and fast memory between the compute nodes and the
file system [11,19,24]. Presence of additional fast memory can pro-
vide scientists with the additional memory required for performing
memory-intensive in-situ analyses.

We propose optimal scheduling of in-situ analyses based on the
resource configurations and application demands. Limited resource
availability may restrict the type and frequency of in-situ analy-
sis. We formulate a mixed-integer linear program that recommends
the analyses that can be performed in-situ within a specified time
threshold and the frequency with which they should be performed.
The input to our optimization problem are the time and memory re-
quirements of the simulation and the analysis kernels. We consider
different computational requirements of the analyses codes, such
as the initial memory allocation and additional memory allocation
for analysis. We also take into consideration the time to analyze
and the time to output the analysis data. We use a simple interpo-
lation based performance prediction strategy for predicting the ex-
ecution time and memory of the kernels. We use IBM’s hardware
performance monitor for measuring computation and communica-
tion time per analysis function. We also use kernel functions to
estimate the memory usage of the analysis routines. Our formu-
lation also allows the ability to assign weights to the analyses in
order to prioritize them. The objective of the linear program is to
maximize the number of in-situ analyses and their collective im-
portance. Given these inputs, the linear program outputs a set of
feasible in-situ analyses depending on the resource characteristics
and the given threshold for analysis computations. The output of

the optimization problem depends on the resource requirement of
the analysis codes and the resource consumption of the simulation.
We evaluate the efficacy of our proposed scheduling mechanisms
for in-situ analyses with two applications - LAMMPS [33] and
FLASH [38]. These simulation codes are routinely used by several
scientists on a variety of supercomputing systems. Both simulation
codes have the capability to perform in-situ analyses and have sev-
eral analysis routines embedded within the simulation code. The
analysis routines can be optionally invoked at a desired frequency.
The novelty of our work is the ability to guide the application
developer or the scientist to decide when to perform and which
analyses to perform in-situ depending on the nature of analyses and
the system parameters. To summarize, our main contributions are:

e Formulation of optimization problem for scheduling in-situ
analyses.

e Recommendation for performing in-situ analyses based on
their resource usage and available system resources.

e Performance modeling of in-situ analysis routines.

e Demonstration of in-situ analyses execution with our pro-
posed optimization schedules with two exemplar applications,
LAMMPS and FLASH, on a leadership supercomputing sys-
tem.

2. RELATED WORK
2.1 Background

Analysis can be performed at the simulation site or an analysis
site either during or after the simulation. Simulation site refers to
the computing environment where the simulations run and analy-
sis site refers to the computing environment used for the analyses.
Post-processing refers to the traditional simulation-analysis work-
flow, where the simulation output is written to storage and the anal-
yses is typically performed after the simulation completes. This
involves writing the simulation data to storage and then reading
this back from storage for analysis. Post-processing enables the
scientists to analyze the entire simulation output at once, which
may be necessary for some analyses. It also provides the capabil-
ity for exploratory data analysis. However, as mentioned earlier, a
challenge here is the need to write large amount of data to storage.
Simulation-time analysis is a viable solution to this problem. Co-
processing or co-analysis, a simulation-time analysis mode, typi-
cally refers to the simulation running on a dedicated resource and
the analyses computations running at another dedicated resource.
The data required to be analyzed is transferred from the simula-
tion site to the analysis site. In-situ analysis, another simulation-
time analysis mode, refers to the simulation and analysis being per-
formed on the same resources. In this case, the simulation may
periodically invoke the analyses routines at a user-designated fre-
quency. To summarize, following are the different analysis execu-
tion modes:

e post-processing - after the simulation, at the analysis site
e co-processing - during the simulation, at the analysis site

e in-situ - during the simulation, at the simulation site

Next, we mention some of the existing work done in these areas.



2.2 In-situ analysis

There have been several recent efforts on the infrastructure and
efficacy of in-situ analysis and in-transit analysis using staging nodes
[2,7,39,43,44]. In [7], the authors combine in-situ and in-transit
analysis for performing three kinds of analyses - descriptive statis-
tics, topological analysis and visualization. They perform some in-
situ computations and transfer the intermediate results to staging
nodes. In this study, the analysis frequencies are prescribed by ap-
plication developers. Their in-situ analysis stage transfers reduced
data to the staging nodes. The down-sampling rate for visualiza-
tion is also user-specified. Similarly, the authors in [38, 39] have
used GLEAN to interface with the FLASH and PHASTA simula-
tion codes for in-situ analysis and co-analysis. Again, the analysis
frequency for this study was selected primarily to demonstrate the
efficacy of the capability of performing simulation-time analysis.
In our work, we envision a scenario wherein such analysis will be
a common occurrence and we propose effective mechanisms for
scheduling of in-situ analysis considering the simulation and anal-
ysis resource requirements and the system resource constraints.

Dreher et al. [10] presented a framework for designing, deploy-
ing and executing in-situ and in-transit analysis. The processing
components of an analysis workflow are assembled in a dataflow
graph, which is used for deploying the workflow. Zhang et al.
[41] perform inter and intra-trajectory analysis in large protein-
folding datasets on distributed memory systems. They perform
analysis computations locally followed by global reduction oper-
ation. While they parallelized their analysis, they perform the anal-
ysis on frames of data that was previously generated and stored.
Zhang et al. [42] present an in-situ approach for feature tracking
through decentralized online clustering. Peterka et al. [32] present
in-situ Voronoi tessellation for cosmological simulations. These
studies also run their analyses at selected time steps. Our objec-
tive in this work, complimentary and synergistic to these efforts, is
to select the optimal number of time steps for performing in-situ
analyses.

2.3 Modeling workflow and performance

Gamell et al. [14] explored the use of NVRAM-based deep mem-
ory hierarchies by data-intensive applications. They empirically
evaluated the use of NVRAM, SSD and hard disk for I/O and online
data analysis. Next, they analytically modeled the workflow exe-
cution time, data transfer time and energy cost to evaluate the best
choice of memory for a given workflow. In our work, we recom-
mend the optimal set of feasible in-situ analyses. As we move to-
wards deep memory hierarchies, these approaches can be exploited
to refine our performance model. In [28,29], the authors propose an
optimization-based adaptive framework for simulation and simul-
taneous visualization based on the resource constraints like storage
space and network bandwidth to decide the best possible parameter
values for simulations and remote visualization. In our work, we
consider resource constraints like I/O bandwidth and network band-
width to schedule multiple analyses along with the simulations.

Performance coupling refers to the effect that two simultane-
ously executing kernels have on each other [15]. Authors in [15,40]
present a performance prediction model for applications using the
knowledge of interaction between different kernels of the applica-
tion. In our case, the analysis and simulation can be considered as
two kernels. However, one needs to know the kernel characteris-
tics extensively to apply the above approaches. Since we used the
analyses codes embedded within the simulation codes, identifying
the coupling between the two is a challenging problem. Hence, we
used a model based on linear interpolation, which gives reasonable
predictions [25,27]. Performance coupling can be leveraged to re-

fine our prediction model.

Performance modeling and prediction is an active area of re-
search. There is a rich set of efforts on modeling an application
performance. Allan et al. [4] compare tools for predicting applica-
tion performance on a range of architectures. However, we required
modeling of certain regions of an application. Performance profil-
ing through tools like HPCToolkit [3], PAPI [30] and TAU [37] etc.
give some insights about the application timings. Intel~ Trace
Analyzer and Collector and Inte]™> VTune Amplifier are only sup-
ported on Intel platforms. For our work, we used IBM’s Hardware
Performance Monitoring tool [16] for profiling. Additionally, we
also required estimates of memory used by the analysis routines,
for which we used IBM’s HPCT profiling tool [9]. As we extend
our work to other systems, the above tools will help us in modeling
performance on these systems.

3. MODELING IN-SITU DATA ANALYSIS

The analyses employed by simulations are driven by the require-
ments of the scientists. The analyses differ with respect to sev-
eral characteristics including their memory and compute require-
ments. These analyses can range from collecting simple descrip-
tive statistics to complex principal component analysis. For cer-
tain analyses, it may be desirable to perform the analysis as fre-
quently as possible. However, performing analysis of every simu-
lation time step output is nearly infeasible due to time and memory
constraints. At the same time, the simulations have diverse set of
requirements and characteristics including memory and computa-
tion time. Compute-intensive applications may have smaller toler-
ance for in-situ analysis, which will result in fewer analysis steps.
Memory-intensive simulations may have low available free mem-
ory for analysis, which will likely impact memory-intensive analy-
ses. System characteristics also play a key role, viz. slow I/O band-
width will likely result in fewer analyses outputs. Thus, we need
to consider both simulation and analysis resource requirements as
well as computing resource characteristics in order to optimally
schedule the analyses. We describe the coupling between simu-
lation and in-situ analysis in Section 3.1. Next, in Section 3.2, we
model the coupling and present the formulation of the optimization
problem for scheduling the in-situ analyses.

3.1 Coupling between Simulation and Analy-
sis

In this paper, we focus on in-situ analysis wherein the analysis
step occurs after some number of simulation time steps. Figure 1
depicts one such ordering of this coupling illustrating the time steps
when simulation (S) is executed and analysis (A) is executed, and
the time steps when simulation output (Og) and analysis output
(O4) are written to disk. Analysis may output to disk after some
number of analysis steps. The analysis frequency and its output
frequency are recommended by our optimization model described
in the next section.

S = Simulation, O — Simulation Output
A — Analysis, O, — Analysis Output

SSSSASO,SSSAO,SSOSSASSSO,SAD,SSS

Figure 1: Analysis occurs every 4 simulation steps. Analysis
outputs every 2 analysis steps. Simulation outputs every 5 sim-
ulation steps.

As mentioned earlier, memory and execution time requirements
of the analysis and simulation play an important role in the cou-
pling. There are several other factors that also play a role. For



instance, analyses such as weekly averages in climate simulation
have to be performed at a certain specific frequency. Also, the
analysis may output its result instantaneously or store in an anal-
ysis memory buffer for further computation later followed by out-
put. Certain implementation designs also affect the nature of cou-
pling. For example, the memory required by analysis may be pre-
allocated in some applications, while some may require allocation
at every analysis step and hence there may be an additional time
overhead. The analysis memory may be freed after computation
and output or retained. For example, in the molecular dynamics
simulation code LAMMPS [33], certain analysis such as the calcu-
lation of mean square displacements of molecules require a large
pre-allocated memory for subsequent analysis as well as additional
memory during the analysis. On the other hand, the FLASH [13]
simulation allocates and deallocates the memory required for anal-
ysis on-the-fly. The coupling is also influenced by the science ob-
jectives. For instance, in certain production runs, a scientist may
require a lower execution overhead (threshold) for the total in-situ
analyses execution time while they may set a higher threshold dur-
ing exploratory and debug runs. Additionally, the problem being
simulated may require a set of analyses to be performed at simula-
tion time and the various analyses may have different importance.
Application developers can select any model of analysis coupling
from these wide range of options. We carefully consider and model
all such possible scenarios for in-situ analysis and present a com-
prehensive model of in-situ data analysis in the next section.

3.2 Optimal Scheduling of In-situ Analysis

Let us assume that we are given a set of desired analyses A to be
performed in-situ. We formulate the problem of scheduling these
analyses as a mixed-integer linear program [31] with the objective
of maximizing the number of in-situ analyses. Each analysis is as-
sociated with time and memory requirements. Table 1 describes
the input parameters for each analysis ¢ € A. Let ft and fm re-
fer to the fixed initialization time and memory allocation required
by an analysis at the start of the simulation execution, a one-time
cost. Let it and ¢m be the execution time and memory required at
every simulation time step to facilitate the analysis during the anal-
ysis step. A simple example is temporal analysis, where it can be
the time required to copy simulation data from simulation memory
to temporary analysis memory so that data is not overwritten and
facilitates temporal analysis. In such cases, this additional over-
head is incurred at each simulation step to facilitate the analysis at
the analysis step. Let ct be the time required for performing the
analysis during the analysis step, and cm be the associated mem-
ory required to facilitate this analysis. A simple example of cm is
the additional memory needed by the analysis to allocate any in-
termediate memory needed for the analysis computation. Let om
refer to the output memory for the results produced by the analysis
after computation and ot be the time required to write this analysis
output to the storage.

Let bw be the average write bandwidth to storage from the sim-
ulation site. Application scientists may provide an upper threshold
on time allowed for in-situ analyses. cth denotes the maximum
threshold on analysis time per simulation time step. Let Steps
denote the total number of simulation time steps. A common us-
age scenario for in-situ analysis is where the application scientist
provides an upper bound on the total overhead of performing the
in-situ analyses. For example, one could allow a maximum of 10%
overhead on the overall simulation. Let mth refer to maximum
memory available for analyses during the entire simulation. Sci-
entists are expected to run multiple analyses in-situ, wherein each
analysis is of varying importance to the simulation. We model this

Table 1: Input parameters for each analysis i € A and avail-
able resources.

|| Parameter | Parameter description

fti Fixed setup time required per analysis

ity Time required per analysis per simulation time step

ctq Compute time required per analysis step

ot; Output time required per output step

cth Threshold (time) per simulation step for analyses

fm; Fixed memory allocated per analysis

m; Input memory allocated per analysis per simulation
step

cmy; Memory allocated per analysis step

om; Memory allocated per output step

mth Maximum memory available for analyses

wj Weight (importance) of each analysis

itv; Minimum interval between analysis steps

bw Average 1/0 bandwidth between simulation site and
storage

importance by assigning a weight w; to each analysis ¢; a higher
weight implies more importance. Additionally, a large class of
analyses require a minimum interval of itv steps between consecu-
tive analyses steps. Examples of such analyses include daily mean
average temperature in climate simulations.

Our goal is to maximize the following:

o the number of times |C;| each analysis ¢ is performed.
e the total number of different analyses, |.A|.

e the total importance of analyses performed in-situ. This is
denoted by w; X |C;]

The decision variables are the set of feasible in-situ analyses A4,
the set of simulation time steps at which analysis is performed C,
and the set of simulation time steps at which the analysis output is
written O.

The objective function of the linear program is given as

mazimize <|A + Zwi X |C1|> (1)
i€A

Next, we describe the three main constraints — the execution
times of the various components of the in-situ analyses and their
associated memory costs and minimum intervals.
Time constraint: The most important criteria for in-situ analysis is
the ability to perform analysis within time constraints without sig-
nificantly increasing the simulation time. The additional time at the
simulation site for all feasible analyses should be less than the max-
imum allowable threshold. The time for in-situ analysis includes
different components like the initialization/setup time per analysis
(ft), time required for analysis per simulation time step (it), time
required for doing analysis (ct), and time required for writing the
output of analysis (ot). These times depend on the type of analysis
and its implementation, and therefore may be zero in some cases.
Time constraints are shown in Equations 2 — 4. t Analyze; ; is the
cumulative time spent on the ** in-situ analysis from start of sim-
ulation to time step j. The initialization cost (time) is added only
once at step 0 for t Analyze for each feasible analysis as shown in



Equation 3.

tAnalyze; ; = tAnalyze; j—1 + it;
+cti (if  €C)+ot; (if j € O)

Vie A, je{l,...,Steps} ?2)
tAnalyze;, o = ft; Vi € A 3)
ZtAnalyzeLSteps < cth x Steps 4)

icA

it is the cost (time) paid every simulation step. ct is the time re-
quired to perform the analysis computation at every analysis step,
and ot is paid whenever analysis output is written to disk. ot can be
substituted by %=%. Note that it is not required that the time spent
on performing analysis at one analysis step is less than the allowed
threshold per simulation time step, cth. However, at the end of the
simulation, the sum of the total time spent on all in-situ analyses
should be less than the threshold cth x Steps. This is shown in
inequality 4.

Memory constraint: The analysis computations are feasible only
when required memory is available at the simulation site. Analysis
may allocate a fixed amount of memory at the beginning, and al-
locate new memory at every simulation time step. In-situ analysis
may allocate memory at every analysis step and deallocate mem-
ory at every output step. These choices depend on the analysis type
and its implementation. The total memory required by an analy-
sis will be the sum of its input and output memory requirements.
This sum should be less than the available memory at the simula-
tion site. Here, we consider all the different scenarios through the
constraints 5 — 8. mStart and mEnd are the amounts of memory
used by analysis at the start and end of each simulation step. Equa-
tion 5 shows the equation for mStart. At every step, the variable
memory im may be allocated, hence it is added to mStart. At
every analysis step, cm may be additionally allocated, and hence it
is conditionally added to mStart. At every output step, analysis
may allocate separate buffer om for output. Therefore, om is also
conditionally added to mStart. mEnd is the available memory
after the end of each step, which is equal to mStart at all steps,
except for output step. At the end of output step, the additional
analysis memory buffers are assumed to be freed, and reset to the
initial memory allocation fm as shown in Equation 6. Memory is
constrained by mth, hence the sum of mStart for all analyses in
all time steps should be less than mth as shown in Equation 8.

mStarti,j = mEndi,j_l + zmz
+emi (if § € C) + omi (if j € O)
vie A, je€{l,...,Steps} (5)

) fma (if j € 0)
mbndi; = { mStart; ; (otherwise)
Vie A, je{1,...,Steps} (6)
mEndiyo = fmz Vie A @)
Z mStart; ; < mth Vj € {1,..., Steps} €))

i€A
Interval constraint: The minimum interval between analysis steps
itv; provides an upper bound for the number of analysis steps dur-
ing Steps simulation times steps. S;‘jf’ £ denotes the maximum

number of analysis steps for ‘" analysis.

|C¢|§@ Vie A )

ivi

The interval constraint enforcement is implemented similar to the

memory constraints. We keep a running total of the steps without
i*" analysis and require this running total to exceed itv; before
i'" analysis can be performed. The running total is reset after the
analysis is performed.
Solution: The solution for C and O are obtained from the above
constraints by introducing 0-1 variables for the conditional equa-
tions. For example, in equation 5, the third term of the right hand
expression cm; (if j € C) is replaced by om; - analysis; ; where
the 0-1 variable analysis;,; is 0 when there is no analysis after
simulation step j and 1 when there is an analysis. Similarly, in
equation 5, the last term om; (if j € O) is replaced by om; -
output; ; where the 0-1 variable output is O when there is no out-
put after an analyses performed in step j and 1 when there is out-
put. Hence, the count of analysis and output for each analysis in
A gives the solution to our problem. The analyses for which the
counts are positive form the set \A. Our model is implemented in
the GAMS [8] modeling language and solved with CPLEX 12.6.1.
Currently, scientists perform simulation-time analyses at a pre-
determined frequency, often found empirically or manually. A for-
mulation like ours provides a systematic way to select an optimal
schedule, and can benefit the scientists. Optimally scheduled in-
situ analysis is highly impactful, because scientists will immedi-
ately see key results with an improved rate of sampling, potentially
improving time to disseminate results. Additionally, in-situ analy-
ses periodically outputting results would allow researchers to check
behavior of a running simulation and potentially interact with it in
real time.

4. PERFORMANCE MODELING

As seen in Table 1, our model requires estimates of the time
and memory requirements of the various analyses and simulation
in order to obtain a solution to the optimization problem. For this,
we employ a combination of profiling and interpolation to derive
the simulation time and analysis time at various system scales and
problem scales. Obtaining an accurate estimate of the analysis rou-
tines embedded in the simulation code using an analytical model is
a challenging problem. In our study, we perform a careful manual
inspection of the analysis routine to understand its computation and
communication characteristics and profile them. On our target eval-
uation system, a BG/Q supercomputer, we use high-resolution ker-
nel timers, IBM’s Hardware Performance Monitoring (HPM) and
HPCT profiling tool [9, 16] to measure execution time and MPI
communication times. HPM allows one to profile regions of code
using HPM_Start() and HPM_Stop() function calls.

To obtain execution times of analysis routines, we first experi-
mentally measure the execution times of few problem sizes on few
core counts, and predict the performance for other problem sizes
on various other core counts using bilinear interpolation. This is
illustrated in Figure 2. The x-variable along the x-axis represents
the problem size and the y-axis variable represents the number of
processes in the case of compute time estimation. The red circles
represent the actual measured execution times. Using this method,
we observed less than 6% prediction error for the computation time.

Predicting communication time on modern networks with com-
plex topology is a challenging problem. We use bilinear interpola-
tion for predicting communication time and change our y-variable
to the one which is more appropriate for modeling the interconnect.
The MPI communications used in most of our current analyses ker-
nels are MPI collective communications such as MPI_Allreduce.
The maximum number of hops in the collective communication is
proportional to the diameter of the network. Hence, in our current
study, we use the network diameter as the y-variable for predicting
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Figure 2: Bilinear interpolation. Red circles represent mea-
sured execution times. x-variable represents problem size. y-
variable represents the process count and network diameter in
case of computation and communication time interpolations re-
spectively.

the communication performance. We observed less than 8% predic-
tion error in communication time estimates. With regards to mem-
ory, the implementation of some analysis routines require a fixed
amount of memory independent of the problem size. Other analy-
sis routines allocate memory proportional to the problem size. We
use bilinear interpolation to determine the memory requirement us-
ing the problem size as the x-variable and the process count as the
y-variable. In absence of precise analytical model due to lack of
complete knowledge of the application, linear interpolation gives a
fairly accurate estimate as shown here by the low prediction errors,
and in earlier work [27]. Note that we can refine the performance
model and leverage the various performance counters and/or mod-
els present in different systems.

5. EXPERIMENTS AND RESULTS

We describe the experimental setup, the applications and the in-
situ analyses used in the evaluation, and present the efficacy of our
in-situ analyses scheduling in several typical usage scenarios.

5.1 Setup

We conduct our experiments on the IBM Blue Gene/Q Mira sys-
tem at Argonne National Laboratory. Mira is a 48-rack machine
with Power BQC 1.6 GHz processor cores. Each rack has 2 mid-
planes consisting of 512 compute nodes each. Each compute node
has 16 GB RAM. Mira has peak I/O bandwidth of 240 GB/s to the
GPFS file system.

5.2 Application Case Studies

We evaluate our optimization-based scheduling of in-situ anal-
yses using two applications. First, we performed our experiments
using the Large-scale Atomic/Molecular Massively Parallel Simu-
lator (LAMMPS) classical molecular simulation code [23,33]. Two
LAMMPS problems were examined in order to best span a large
range of conditions explored in molecular simulations of liquids,
materials, and biological systems. The first problem investigated
is a box of water molecules solvating two types of ions. For this
problem, the number of atoms in the system was varied from 16
million to 400 million atoms. Table 2 lists the analyses investigated
for this problem. The set comprises of radial distribution functions
(RDF), the mean square displacements (MSD) of molecules/ions,
and velocity auto-correlation functions. Combined, these physical
observables provide key information on understanding the struc-
ture and dynamics of liquids and materials [5]. Additionally, their
respective algorithms (e.g. accumulating histograms, computing
time averages, evaluating correlation functions) are representative
of those employed in the calculation of a large class of physical
observables (e.g. dielectric constant and shear viscosity).

Table 2: Analyses for simulation of water and ions in LAMMPS

Analysis Analysis Description

Name

hydronium Compute hydronium-water,

rdf (A1) hydronium-hydronium, and hydronium-ion RDFs
averaged over all molecules

ion rdf (A2) Compute ion-water and ion-ion RDFs averaged
over all molecules

vacf (A3) Compute velocity auto-correlation function for
the water-oxygen, hydronium-oxygen, and ion
atoms

msd (A4) Compute mean squared displacements averaged
over all hydronium and ions

The second LAMMPS problem explored in this work is the rhodopsin

protein benchmark, which consists of a protein embedded in a mem-
brane and solvated with water and ions [34]. For this problem, we
varied the number of atoms in the system from 16 million to 1 bil-
lion atoms. The set of analyses investigated for this problem are the
radius of gyration for a single protein and 2D histogram of density
profiles for the membrane and protein structures (listed in Table 3).
These properties provide insight into the distribution of particles
within an assembled structure and throughout the system. Just as
for the water+ions system, these analyses are commonly employed
in studies of aggregate structures and assemblies and are of interest
to a large community of researchers [5]. Figure 3 shows a snapshot

Figure 3: Snapshot of the LAMMPS rhodopsin benchmark
(32,000 atoms): protein (solid purple; center) is embedded in
membrane (translucent green; middle) and solvated with water
(translucent blue; top and bottom) and ions (orange spheres).

of the base LAMMPS rhodopsin benchmark (32,000 atoms) using
VMD [1]. The solid purple structure in the center is the protein. It
is embedded in membrane which is shown in translucent green in
the middle and solvated with water (shown in translucent blue at
the top and bottom) and ions (shown as orange spheres).

The second application used in our evaluation is the FLASH
multiphysics multiscale simulation code [13]. FLASH is an adap-
tive mesh, parallel hydrodynamics code developed to simulate high
energy density physics and astrophysical thermonuclear flashes in
two or three dimensions, such as Type la supernovae, Type I X-
ray bursts, and classical novae. It solves the compressible Euler
equations on a block-structured adaptive mesh. FLASH provides
an Adaptive Mesh Refinement (AMR) grid using a modified ver-
sion of the PARAMESH package [26] and a Uniform Grid (UG) to
store Eulerian data. For this study, we used the Sedov simulation



Table 3: Analyses for the rhodopsin protein LAMMPS benchmark

Analysis Name Analysis Description

radius of gyration Compute the radius of gyration for a single
(R1) protein

membrane Compute the 2D histogram of the density

histogram (R2) profiles of all membranes

protein histogram Compute the 2D histogram of the density

(R3) profiles of all proteins

included in the FLASH simulation distribution. Sedov evolves a
blast wave from a delta-function initial pressure perturbation [12].
We ran the FLASH simulation for the Sedov problem using three
dimensions with 16> cells per block. Each block consists of 10
mesh variables and we can vary the problem size by adjusting the
global number of blocks to simulate larger domain sizes. We per-
form three different analyses for FLASH, namely

e vorticity (F1)
e L1 error norm for density and pressure (F2)
e L2 error norm for x, y, z velocity variables (F3)

Figure 4 summarizes the relative execution time and memory
requirements of the various analyses listed above.
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Figure 4: The relative execution time and memory consump-
tion profiles of the various in-situ analyses.

5.3 Results

In this section we present the results of our experiments with
LAMMPS and FLASH on Mira. We used GAMS modeling lan-
guage for modeling the optimization problem, and solved using
IBM CPLEX solver v12.6.1 on a 2.2 GHz Intel CPU. The execu-
tion times of the solver for all the problems presented in this paper
varied between 0.17 sec — 1.36 sec. The variation in time is due to
the difference in problem input parameters.

5.3.1 Benefit of in-situ analysis

Table 4 shows the time for MSD calculation (analysis A4 of
Table 2) using a serial custom post-processing tool on Intel Core
i7 3.4 GHz system and analyzing in-situ on 16384 cores of Mira.
The analysis was done for 1000 simulation steps and the simula-
tion was configured to write an output frequency every 100 steps.
The first column shows the number of atoms in the system. The
second column depicts the time to read the LAMMPS trajectory
file when analyzing in post-processing mode. The third and fourth
columns show the times to analyze in a post-processing mode and
in an in-situ mode respectively. It can be easily seen that the time

to post-process (read+analyze) is significantly higher than doing
this in-situ. One of the primary reasons for this is the mitigation
of reading cost from the storage. Secondly, in-situ analysis can be
performed at scale along with the simulation on powerful compute
resources. The overhead for in-sitt MSD was less than 5% in both
cases. The time to read the output increases with increase in data
size (number of atoms). However, significant savings are possible
with in-situ analysis. This shows the benefit of in-situ analysis for
larger system of atoms.

Table 4: Analysis time (post-processing and in-situ) for MSD calcula-
tion of water+ions simulation (1000 steps) in LAMMPS. In-situ analysis
incurs significantly lower cost than post-processing.

Number Time to Post-processing In-situ analysis
of atoms read (s) time (s) time (s)

12,544 23.89 1.03 0.01
100,352 2413.11 17.85 0.03

5.3.2  Efficacy of in-situ analysis scheduling

We study the impact of varying the threshold time for analysis,
specified as a percentage of the simulation time, on scheduling the
various in-situ analyses. This represents a common expected use-
case wherein the scientist/user is willing to tolerate execution of the
various in-situ analysis within a certain threshold of the simulation
time. To study this, we use the LAMMPS water+ion problem with
aproblem size of 100 million atoms and its associated analyses (see
Table 2). Each analysis was assigned the same importance/weight
and the minimum interval for each analysis is 100 simulation steps.
The experiment is performed on 16384 processes (1024 nodes, 16
ranks per node) of Mira. The total simulation time for 1000 time
steps is 646.78 sec. The solution of our optimization model is de-
picted in Table 5.

The first column shows the threshold allowed for the in-situ anal-
yses as a percentage of the simulation time and the corresponding
time. The columns 2 — 5 show the number of times each of the anal-
yses hydronium rdf (A1), ion rdf (A2), vacf (A3) and msd (A4)
can be performed within the given threshold during a simulation
of 1000 steps. These numbers are the output produced by the opti-
mization solver taking into account the execution time and memory
requirement estimates of each analysis. Column 6 depicts the total
execution time taken by the in-situ analyses based on the proposed
optimization solution when run with the simulation. The last col-
umn depicts the ratio(%) of the actual execution time for the in-situ
analyses with respect to the threshold limit. The threshold is varied

Table 5: Threshold (%) and analyses frequencies of 4 analyses for
100 million-atom water+ions simulation in LAMMPS on 16384 cores
of Mira.

Threshold % Al A2 A3 A4 Analyses % within
(time in sec) time (sec) threshold
20 (129.35) 10 10 10 4 103.47 80
10 (64.69) 10 10 10 2 52.79 81.6
5(32.34) 10 10 10 1 27.45 84.87
1 (6.46) 10 10 10 0 2.11 32.66

from 20% to 1%. It can be seen that Al, A2, A3 are performed
10 times in 1000 simulation time steps, i.e. once every 100 sim-
ulation steps - the maximum allowable frequency. The frequency
of A4 decreases as we decrease the threshold, i.e. decrease in the



allowed additional time for in-situ analyses. This is because A4
has both significantly higher analysis execution time and analysis
output time as well as requires more memory. Therefore the opti-
mization model recommends fewer number of A4 analysis steps to
satisfy the time threshold requirement.

From the last column, we observe that the time taken by the in-
situ analyses is always within the specified threshold. As we in-
crease the threshold, the total analyses times are always within 80%
of the allowed analyses time. A threshold of 5-20% for this con-
figuration results in higher threshold and hence the solver is able to
recommend higher number of analyses that can be performed in-
situ. At a threshold of 1%, the solver is unable to accommodate A4
as the execution requirements of A4 exceed that of the threshold
and the solver schedules the other three analyses at the maximum
frequency. Thus, the linear program recommends optimal parame-
ters (analyses frequencies) for the given application parameters and
system parameters. The model is flexible enough to account for a
user-specified threshold and propose appropriate optimal schedule
for the various in-situ analyses. We expect this use-case to play an
important role as scientists start adopting simulation-time analysis.

5.3.3  Efficacy of in-situ scheduling for moldable jobs

A new capability of current job schedulers is the ability to ac-
commodate moldable jobs whose running sizes (i.e., number of
nodes) are dynamically decided by the scheduler at job allocation
time [35]. Moldable jobs are typically strong scaling jobs solving
the same problem at different core counts and a primary purpose is
to fill the backfill queues of the system to improve the overall uti-
lization of the computing resource. Figure 5 depicts the strong scal-
ing results for the three analyses, Al, A2 and A4, (see Table 2) in
the 100 million atom LAMMPS water+ions simulation as we scale
from 2048 to 32768 cores on Mira. The simulation time per time
step on 2048, 4096, 8192, 16384 and 32768 processes are 4.16,
2.12,1.08, 0.61 and 0.4 sec respectively. The threshold for the total
in-situ analyses time is set to 10% of simulation time. The stacked
bars at each core count illustrate the times taken by each analysis
in 1000-step simulation. Note that the simulation time decreases
with increase in number of processes. This implies a decrease in
allowable time for analyses as we have a fixed threshold value. It
should be noted that the threshold is a percentage of the simula-
tion time, and as we lower the simulation time, it also lowers the
analyses time upper bound.
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Figure 5: Strong scaling for analyses in 100 million atom wa-
ter+ions LAMMPS simulation on 2048 — 32768 cores of Mira.

The analyses times shown in the figure are based on the frequen-
cies recommended by the linear program. It takes into account the
compute and memory characteristics of A1, A2 and A4 and recom-

mends a frequency of 10 for A1 and A2 on all core counts. How-
ever, it recommends decreased frequency of A4 from 10 on 2048
cores to 1 on 32768 cores. The reason is that the MSD analyses
(A4) does not scale and takes similar times on all core counts. Al
and A2 scale well at higher number of processes. Therefore, even
with decrease in the total allowable analyses time on higher process
counts, Al and A2 can be performed at a high frequency. Thus, our
proposed optimization framework effectively helps schedule in-situ
analyses for moldable jobs, which are of increasing importance for
leadership supercomputers.

5.3.4  Efficacy of in-situ scheduling given a total thresh-
old

Another common usage scenario is wherein a scientist/user spec-
ifies a maximum total allowable threshold time for the desired set
of in-situ analyses. This is distinct from the previous cases where
the threshold is a percentage of the simulation time. Specifying a
total time for the threshold helps a scientist better plan the run time
of their jobs as part of job submission script. Our linear program
can recommend solutions based on this maximum time as cth in
Equation 3 of the optimization problem.

Table 6 depicts such a scenario for the rhodopsin protein bench-
mark in LAMMPS consisting of 1 billion atoms (refer Section 5.2)
where the user specifies the maximum allowable in-situ analysis
time. The simulation was executed on 32768 cores (2048 nodes,
16 ranks per node) of Mira. Without any in-situ analysis, the sim-
ulation takes 5163.03 seconds for 1000 time steps on 32768 cores.
The desired set of in-situ analyses R1, R2 and R3 are listed in Table
3. Each analysis was assigned the same importance/weight and the
minimum interval for each analysis is 100 simulation steps. The
time taken for each analysis followed by an output step was 0.003
sec, 17.193 sec and 17.194 sec for R1, R2 and R3 respectively.

Table 6: Analysis frequencies, analysis times, and corresponding
thresholds for 1 billion atoms rhodopsin simulation (1000 steps) in
LAMMPS on 32768 cores of Mira.

Total  threshold R1 R2 R3 | % within
(sec) threshold
200 10 4 7 | 94.59

100 10 2 3 | 85.99

60 10 1 2 | 86.01

20 10 1 0 | 86.11

10 10 0 0103

We vary the threshold from 200 secs to 10 secs, and our opti-
mization solution gives the frequencies for each analysis. This is
depicted in columns 2 — 4. We see that as we decrease the max-
imum allowable time from 200 sec to 10 sec, the total number of
analyses decreases from 21 to 10. It is worthwhile to note that since
R1 has much lower compute time, the solver recommends a higher
frequency for R1. For example, when the maximum allowable time
is 100 sec, R1 can be performed 10 times in 1000 simulation time
steps, i.e. every 100 steps. However, the recommendation for R2
and R3 are 2 and 3 times respectively during 1000 simulation steps,
i.e. every 500 and 330 steps respectively.

The last column depicts the percentage of the allowed threshold
time taken by the in-situ analysis executions. We can observe that
the analyses times utilize more than 85% of the specified threshold
time for almost all cases. At a high threshold of 200 secs, the solver
is able to recommend more number of analyses to fully utilize the
given threshold time. As the threshold decreases, the solver has
lesser options to pack the allotted time. In case of a threshold of



10 secs, a time lower than the minimum time needed for running
either R2 or R3, we get an expected solution of 10 steps of R1 -
the minimum interval of 100 steps yielding a maximum frequency
of 10, and, has a low utilization. In all other cases, we observe a
usage of 86% to 94.59% of the allowed threshold time. Thus, the
model is flexible enough to account for user requirements on the
total time for the various in-situ analysis and yield high utilization.
‘We expect this use case to play an important role for accounting for
the total runtime for job scheduling.

5.3.5 Effect of output time on analyses time

Table 7 shows the total number of feasible analyses in 1000 sim-
ulation steps for 1 billion atoms rhodopsin simulation in LAMMPS
on 32768 cores of Mira. The simulation time for 1000 time steps
is 5163.03 sec. The simulation produces 91 GB of data per out-
put step and the default output frequency is every 100 steps. The
first column shows the total output time, second column shows the
user-specified threshold for analyses, and the third column shows
the total number of feasible analyses (Al, A2, A3 and A4) rec-
ommended by our optimization model. For the default 10 output
steps, the total output time (using MPI parallel I/O) is 200.6 sec
(first row). Assuming, the user specifies a threshold of 50 sec, the
total number of feasible analyses for Al, A2, A3 and A4 is 12. To
maximize the benefit of in-situ analyses, the user can decrease the
output frequency and hence gain additional time for in-situ analy-
ses. We show the effect of this in second and third rows. If the
output frequency is halved, the output time is also halved. There-
fore, the user can utilize this additional time in specifying a higher
threshold, which results in increase in number of in-situ analyses.
It can be observed that by decreasing output frequency, one can in-
crease the number of in-situ analyses. Decrease in output time is

Table 7: Output times, thresholds, and number of analyses for 1 bil-
lion atoms rhodopsin simulation (1000 steps) in LAMMPS on 32768
cores of Mira.

Output time Threshold Number of
(sec) (sec) analyses

200.6 50 12

100.3 150.3 18

50.1 200.5 21

also possible by using a higher bandwidth storage like NVRAM.
Thus, by selecting a different resource for storing output, one can
perform more number of in-situ analyses in the same time. Thus,
our optimization approach can be used to understand and predict
the effect of different system characteristics on scheduling in-situ
analyses.

5.3.6  Impact of the importance of analyses on the
schedule

Depending on the objective of the scientific simulation, a user
may have several analyses to execute in-situ, wherein certain anal-
yses may have higher priority over the others. Also, given a time
constraint, one may want to prioritize the set of analyses performed
in-situ. We evaluate the efficacy of our optimization model given
the importance (weights) of the in-situ analyses. Table 8 depicts the
execution times for the three analyses in FLASH - vorticity (F1),
L1 error norm (F2) and L2 error norm (F3). The analysis times for
one step of F1, F2, and F3 are 3.5 sec, 1.25 sec and 2.3 ms respec-
tively on 16384 cores of Mira. Each simulation time step typically
takes 0.87 sec. The table shows the recommendation from the lin-
ear program on the frequency of F1, F2 and F3 for a 1000-step

simulation. Importance (weight) of an analysis is denoted by in-
tegers and higher weight implies a higher priority of the analysis.
The first two rows depict the results when assigning the same im-

Table 8: Analyses frequencies in FLASH Sedov simulation (1000
steps) on 16384 cores of Mira. Optimization problem recommends dif-
ferent frequencies for difference in importance of the analyses.

Vorticity L1 error L2 error

(F1) norm (F2) norm (F3)

Importance (I1) 1 1 1
Frequency 1 10 10
Importance (I12) 2 1 2
Frequency 5 0 10

portance (I1) to all three analyses. The next two rows depict the
result of the optimization when we assign different importance (12)
to the analyses. Let us assume a fixed threshold of 5%, i.e. the
user allows a maximum execution time of 43.5 sec for the in-situ
analyses during a 1000-step simulation (870 sec). Note that F1 is
more compute intensive than F2 and F3. Hence, if we assign the
same importance to all three, the proposed solution is to perform
F1 once (second row, second column) taking into account the anal-
yses and output times of all three. If the user now prefers F1 and F3
over F2 and reassigns the weights accordingly, the solution of the
optimization model yields a higher frequency for F1 and F3 (fourth
row). Note that F3 has a higher frequency than F1 because F3
consumes lesser time and memory than F1. This demonstrates the
effectiveness of the optimization approach in deciding the different
analyses frequencies based on user/application requirements. The
approach also provides flexibility to a user to choose the optimal
number of analyses based on their importance.

6. CONCLUSIONS AND FUTURE WORK

We envision in-situ analysis to be a common execution modal-
ity for science campaigns on supercomputing systems. To facili-
tate this, we tackle the challenge of scheduling the analyses with
the simulation. We consider and model the time and memory re-
quirements of the analyses, the importance of the analyses and the
system parameters like the computation time, I/O bandwidth, and
maximum available memory to decide the optimal frequencies of
the in-situ analyses. We use a mixed-integer linear program to solve
this problem. Our optimization approach recommends the analyses
frequencies depending on a threshold limit on maximum additional
time (overhead) for in-situ analyses. This gives ability to the scien-
tist to choose those analyses which are more important and which
can be performed within the time and memory constraints. We
evaluate our approaches using two configurations of the LAMMPS
simulation and one configuration of the FLASH simulation and
scale to 32K cores. Our optimization approach yields optimal in-
situ schedules while satisfying the various user constraints.

In future, we will extend this work to optimally schedule the
analyses computations on different resources. This requires trans-
ferring huge data in some cases. It will be also interesting to pipeline
visualization along with simulation and analysis.
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