
In Situ Statistical Analysis for Parametric Studies

Théophile Terraz
Univ. Grenoble Alpes, INRIA

France

Bruno Raffin
Univ. Grenoble Alpes, INRIA

France

Alejandro Ribes
EDF Lab Paris-Saclay

France

Yvan Fournier
EDF Lab Paris-Chatou

France

Abstract—In situ processing proposes to reduce storage needs
and I/O traffic by processing results of parallel simulations
as soon as they are available in the memory of the compute
processes. We focus here on computing in situ statistics on the
results of N simulations from a parametric study. The classical
approach consists in running various instances of the same
simulation with different values of input parameters. Results are
then saved to disks and statistics are computed post mortem,
leading to very I/O intensive applications. Our solution is to
develop Melissa, an in situ library running on staging nodes as a
parallel server. When starting, simulations connect to Melissa
and send the results of each time step to Melissa as soon
as they are available. Melissa implements iterative versions of
classical statistical operations, enabling to update results as soon
as a new time step from a simulation is available. Once all
statistics ar updated, the time step can be discarded. We also
discuss two different approaches for scheduling simulation runs:
the jobs-in-job and the multi-jobs approaches. Experiments run
instances of the Computational Fluid Dynamics Open Source
solver Code_Saturne. They confirm that our approach enables
one to avoid storing simulation results to disk or in memory.

Index Terms—Parallel processing; Data processing

I. INTRODUCTION

Large scale simulations are producing an ever growing

amount of data that are overloading the machine I/Os, im-

pacting the performance of both the simulation when saving

the data, and the post hoc analysis when reading them. In situ
processing proposes to move away from the standard approach

that consists in saving raw data to disks and then perform

result analysis post mortem. In situ aims at reducing data

traffic and speeding-up result analysis by performing result

processing (compression, indexation, analysis, visualization,

etc.) as closely as possible to the locus and time of data

generation [1]. Research to make in situ processing efficient

often focuses on how to perform analytic on the data produced

by a single large parallel simulation [2]. Investigated issues

include the development of various frameworks for easing

coupling the simulation and the analysis [3], [4], [5], advanced

strategies for resource sharing between the simulation and the

analysis [6], as well as new algorithms taking into account the

specific balance of the in situ processing context (need to save

on data movements) [7].

In this paper we consider a different context where we

compute statistics combining the results of N simulations to

perform a parametric study. The result of such a family of runs

is called ensemble data set, and each individual run is called

a member. Ensembles are also multidimensional, multivariate

Figure 1: Visualization of 600 Monte Carlo simulations of

thermo-hydraulical transients.

and multivalue [8]. Challenges in analysing and visualizing

ensembles stem from the size and complexity of the data [9].

The classical approach consists in running various instances

of the same simulation with different values for some input

parameters. Results are saved to disks and statistics computed

post mortem. The base scenario is to compute statistics, an

average for instance, over the various values that take a given

parameter for a given mesh element at a given time (x, y, z, t)
through the N simulations. To avoid being overwhelmed with

data, often the simulation outputs the data for a sub-sample of

all the computed (x, y, z, t) points.

Parametric studies are becoming increasingly popular in

industrial environments. For instance a consortium of com-

panies, including EDF, one of the biggest electricity producer

in the world, has developed specific software infrastructures

for parametric studies like OpenTurns [10]. But such environ-

ments are working with data stored in files and cannot cope

with very large amount of data. A solver like Code_Saturne,

a CFD code developed at EDF, can run large scale numerical

simulations [11], dealing with meshes from several million up

to a few billion million cells. Code_Saturne already supports

in-situ visualisation based on Catalyst [12], but for a single

run. Performing analysis on several runs requires to an amont

of data that is several order of magnitude larger. With the

hypothesis that the solver is (using the nomenclature of [8]):

• multidimensional: we consider a 3D mesh with 1,000

million cells and 200 time steps,

• multivariate: we consider calculating 10 result vector

fields (with 3 components per field element),

2016 Second Workshop on In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization

978-1-5090-3872-5/16 $31.00 © 2016 IEEE

DOI 10.1109/ISAV.2016.12

35

• multivalued: we consider a simple parametric study with

N=100 runs,

the ensemble size would reach 1,200 TB (109 × 200 × 10 ×
3× 100× 2 considering data coded on 2 bytes) or 12 TB per

simulation run. One could argue that such 1,000 million cells

mesh has never been used in parametric studies before. If we

consider a simpler 100 times smaller mesh of 10 million cells,

a scale today common in industrial environments, we would

still get an ensemble of 12 TB. To reduce the data size, a first

solution commonly adopted in industrial parametric studies

consists in eliminating part of the complexity by choosing

one variable (eliminate multivariability) and one point in

the simulation (eliminate spatial multidimensionality). This

solution leads to a reduced dataset where only the multiple

values of one parameter for the different simulations and

timesteps are kept. Fig. 1 shows 600 Monte Carlo simulations

of temperature in function of time in a thermo-hydraulical

transient parametrical simulation performed at EDF, simu-

lating a large break loss of primary coolant accident in a

power plant. The engineer can study the loss of temperature

by exploring this set of curves but they are focusing on a

specific variable and on a specific location in the simulation

domain. Attempting to compute statistics for all variables and

locations handling data stored on disks would be extremely

time-consuming or just not possible today.
In this paper we present early work to compute efficiently

the statistics for all variables, locations and timesteps, by

relying on an in situ processing approach. The goal is to avoid

having to save the simulation results to disk, computing the

statistics as soon as available from the simulations. Because

we bypass the disk, we can envision to compute the statistics

at a high sampling rate, or, what we considered for our

experiments, at full resolution. For that we have developed

a library called Melissa (Modular External Library for In Situ

Statistical Analysis), running on staging nodes as a parallel

server. When starting, simulations connect to Melissa and

forward it the results of each time step as soon as available.

Melissa implements iterative versions of classical statistic

operations (average, standard deviation, minimum, maximum

and threshold exceedance) enabling to update results as soon

as a new time step from a simulation is available. Once all

statistics updated, the time step can be discarded. We also

discuss two different approaches for scheduling simulation

runs. Each run can be submitted to the machine batch sched-

uler, letting the scheduler optimize resource allocation globally

in between all submitted jobs from the different users. The

second approach consists in requesting once the necessary

resources for running all simulations as well as Melissa,

and then use our own scheduling strategy on the allocated

resources. After presenting Melissa Architecture (Sec. II), we

introduce some early experiments (Sec. III).

II. ARCHITECTURE

A. Iterative Statistics
We consider a numerical simulation on a fixed mesh. The

simulation computes values for different fields u for each mesh

cell or node. As meshes have usually 3 dimensions, we denote

by X = (x, y, z) each node or cell. The simulation progresses

in time through various time steps (all simulations simulate

the same time steps). Let t be the time step index. The same

simulation runs N times with different input parameters. Let

call i the ith simulation. The goal is to compute statistics over

all simulations for each mesh element at each time step and

for each field u(i,X, t). For instance, the classical formula to

compute a simple mean of the field u for each (X, t) over the

N simulations is:

μ(X, t) =

∑
i=1,N u(i,X, t)

N

Our goal is to compute such statistics in situ with a minimal

memory footprint. If the statistics can be computed iteratively,

i.e. if the current value can be updated as soon as incoming

results are available, we would not need to save the simulation

results. This is actually the case for the simple mean μ that

can be formulated iteratively:

μi(X, t) = μi−1(X, t) +
1

i
(u(i,X, t)− μi−1(X, t))

with μ0(X, t) = 0 and 1 ≤ i ≤ N . Similarly for the the

variance:

Vi(X, t) = Vi−1(X, t)

+ (u(i,X, t)− μi−1(X, t))(u(i,X, t)− μi(X, t))

with V0(X, t) = 0 and 1 ≤ i ≤ N . Not only simulation

results do not need to be saved, but they can be consumed

in any order, lossening synchronisation constraints on the

simulation executions. More generally, a given statistic Stat
can be computed iteratively if it can be written as:

Stati(X, t) = f(Stati−1(X, t), u(i,X, t)).

We implemented iterative statistics for the simple mean, vari-

ance, minimum and maximum, threshold exceedance follow-

ing [13]. In all cases, simulation results can be processed in

any order. It remains to be seen if all statistics that a user may

need, can be formulated iteratively.

B. In Transit Data Processing

Given that the statistics we perform combine the results

obtained from different simulations on the same mesh element

and time step, we based Melissa architecture on an in transit

processing model where simulations results are forwarded

as soon as available to the staging nodes Melissa runs on

(Fig. 2). Combining an in situ approach with iterative statistics

enables to drastically reduce the amount of memory needed.

No simulation is saved to disk. Melissa only needs to keep in

memory the current version of each statistic computed. It is of

the order of the size of the results of one simulation. Increasing

the number of staging nodes enables to increase the amount

of memory available. Memory size can also be extended by

relying on out-of-core memory (using local SSD disks or burst

buffers for instance) but Melissa does not support it yet.

36

Figure 2: Melissa architecture diagram. Simulations connect to

Melissa when starting and forward results as soon as available.

C. Client/Server

Melissa relies on a client/server model. This is not classical

in HPC environments, but it is a flexible approach that fits

well the particular execution scheme of parametric studies. A

Melissa server runs in parallel several MPI processes that can

be distributed on different nodes. Melissa runs as a service

waiting for simulations to connect and forward their results.

Once the connection between one simulation and Melissa

is established, each process from the simulation directly

distributes its results to the target Melissa processes that

need them, thus limiting data copies. Messages received are

directly processed to update the computed statistics. Melissa

can process the incoming messages from several simulations

running simultaneously. Melissa adopts its own partition of

the simulation space that is so far defined statically at start

time. On the simulation side, the modifications required are

minimal. The code needs to embed the logic for establishing

the connection with Melissa, the routine to scatter the data to

the correct target Melissa processes, and connection closing.

Current Melissa implementation relies on the ZEROMQ

communication library [14] commonly used for distributed

applications. ZEROMQ allows several clients to connect to the

same server port, and takes care of message transfer, buffering

and aggregation in the background. It proved very convenient

for development. The main ZEROMQ limitation we identified

so far is the lack of direct support for high performance

networks like Infiniband. It needs to rely on IP over infiniband

instead. However in our context we did not experience any

performance issue, neither on the simulation side nor on the

server side. We did attempt to use MPI_connect, but it proved

more cumbersome than ZEROMQ, leading to a more complex

code without any visible performance benefit.

We could rely on a solution like DataSpaces [5] that

provides in-memory data staging for parallel simulations. But

we actually do not need to store the simulation results as they

are consumed as soon as produced.

D. Resource Allocation

The client/server model allows to run each simulation

independently in different execution contexts. This flexibility

enables to envision two different ways for scheduling execu-

tions:

• Jobs-in-job: the user first request one set of processors

for executing all the simulation runs and one instance of

Melissa to the machine scheduler in charge of deciding

when and where to execute submitted jobs. Then, this

is the user responsibility to schedule the different jobs

within the envelop of resources allocated by the machine

scheduler. One option is to rely on a traditional batch

scheduler. Some like OAR [15] support such scheduling

scheme. Once the resources available, the user can have

a good estimate of the full execution duration.

• Multi-jobs: each simulation run is submitted individually

to the machine batch scheduler. The only constraint is to

make sure that Melissa is running from the first to the

last simulation execution, and that the communication

between jobs from the same user are allowed on the

machine. Exposing all the runs to the machine batch

scheduler allows it to take benefit of their independence

to better leverage the machine resources. But the global

duration of the experiment is more uncertain compared

to the previous approach.

Notice that because Melissa does not need all the runs to

execute with the same number of processes, the number of

processors allocated to each run could be decided by the batch

scheduler. Though it has been shown that scheduling these

moldable jobs is more efficient than having rigid jobs, this is

a feature supported by some batch schedulers but that we did

not test yet in our context [16].

III. EXPERIMENTS

We present here a first set of early experiments at modest

scale. All the computations presented in this paper were

performed on the Froggy machine. Each Froggy node have

two Intel E5-2670 (Sandybridge) 2.6 Ghz 8 cores processors,

64 GB memory, and are interconnected by a FDR InfiniBand

network. The batch scheduler used on this machine is OAR1.

The simulation code is Code_Saturne2, a parallel CFD

code developed by Electricité de France (EDF). The statistical

analysis is performed by Melissa. The use case created by

EDF for this experiment simulates a purge of a volume of

hot water by introducing a flow of cold water (Fig. 3). The

parametric study consists in varying the initial temperature

1https://oar.imag.fr/
2http://code-saturne.org/

37

Figure 3: The use case : a cavity filled with 300◦C water,

chased by a stream of 25◦C water.

of the hot water from 300◦C to 350◦C by 5◦C steps, and the

temperature of the cold water from 20◦C to 30◦C by 1◦C steps.

For this experiment, Melissa computes the mean, variance and

min and max of temperature and pressure for each element

of the mesh at each time step. We used a 3D mesh of 6 002

400 elements. Adapting Code_Saturne to support Melissa was

straightforward. We wrote a new writer (Code_Saturne plugin

that encapsulates the output data management code) based on

Melissa. This writer code is about 400 lines of codes including

40 Melissa specific ones.

We first ran one simulation writing the outputs to disk

(Ensight Gold data format). The output is 24 MB per time step

and per output field. If we run 100 simulations with 30 time

steps and two output fields each, this leads to write 144 GB on

disc. When analysing the results in situ these data are directly

processed by Melissa. Disk usage is limited to storing the final

statistics (24 MB per time step per field and per statistic, for

a total of 5.76 GB). Statistics for each time step can next be

visualized with traditional tools like VTK/Paraview (Fig. 4).

Experiments also confirm that computing the statistics is a

lightweight work compared to the simulation. Running Melissa

on 16 processes (one node) and the simulation on up to 128

cores (8 nodes), Melissa processes the data produced by one

time step in less than 0.02% of the time it takes to compute

these results. When running 100 simulations in parallel, each

one on 16 processes (1 node), Melissa load is still bellow 1%.

We tested the two different scheduling strategies presented

in II-D using the OAR batch scheduler. The jobs-in-job

scheduling can be performed with OAR by first submitting

a specific empty job called a container to request for the

allocation of a set of resources. Then, we submit independently

the simulations and Melissa job as usual, but requesting OAR

to schedule these jobs in the container only. As expected on

a an empty cluster, the delay between the first job submission

and the completion of the executions was similar for both

cases (multi-jobs and jobs-in-job). On a busy cluster, launching

(a) t = 0.006 s (b) t = 0.012 s

(c) t = 0.018 s (d) t = 0.024 s

Figure 4: Heat variance fields for 100 simulations at four

different time steps on an horizontal slice

multi-jobs leads to a faster scheduling.

IV. CONCLUSION

We presented the early development of Melissa, a library for

computing statistics for large scale parametric studies. Melissa

runs as a parallel server on staging nodes, processing the

results of each time step as soon as available. Melissa enables

to bypass the storage of simulation results to disk and requires

memory to store the computed statistics only. Such gains rely

on the capability to compute the statistics iteratively. Future

work include large scale experiments, adding more statistic

operations as well as extending Melissa with fault tolerance

mechanisms. Melissa is still at an early development stage.

We expect to open source the code and make it available in

the coming months.

ACKNOWLEDGEMENT

This work was partly funded in the Programme

d’Investissements d’Avenir , grant PIA-FSN2 -Calcul

intensif et simulation numérique - 2 - AVIDO. All presented

computations were performed on the CIMENT infrastructure3,

which is supported by the Rhône-Alpes region (GRANT

CPER07_13 CIRA) and the Equip@Meso project (reference

ANR-10-EQPX-29-01) of the programme Investissements

d’Avenir supervised by the Agence Nationale pour la

Recherche.

REFERENCES

[1] H. Yu, C. Wang, R. Grout, J. Chen, and K.-L. Ma, “In situ visualiza-
tion for large-scale combustion simulations,” Computer Graphics and
Applications, IEEE, vol. 30, no. 3, pp. 45–57, 2010.

[2] M. Dorier, M. Dreher, T. Peterka, J. M. Wozniak, G. Antoniu, and
B. Raffin, “Lessons Learned from Building In Situ Coupling Frame-
works,” in Workshop on In Situ Infrastructures for Enabling Extreme-
scale Analysis and Visualization (ISAV’15)- Held in conjunction with
SC15. Austin: ACM, Nov. 2015.

3https://ciment.ujf-grenoble.fr

38

[3] M. Dorier, G. Antoniu, F. Cappello, M. Snir, and L. Orf, “Damaris:
How to Efficiently Leverage Multicore Parallelism to Achieve Scalable,
Jitter-free I/O,” in CLUSTER - IEEE International Conference on Cluster
Computing. IEEE, Sep. 2012.

[4] M. Dreher and B. Raffin, “A Flexible Framework for Asynchronous
In Situ and In Transit Analytics for Scientific Simulations,” in 14th
IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing. Chicago, United States: IEEE Computer Science Press,
May 2014. [Online]. Available: https://hal.inria.fr/hal-00941413

[5] C. Docan, M. Parashar, and S. Klasky, “DataSpaces: an Interaction and
Coordination Framework for Coupled Simulation Workflows,” Cluster
Computing, vol. 15, no. 2, pp. 163–181, 2012.

[6] F. Zheng, H. Yu, C. Hantas, M. Wolf, G. Eisenhauer, K. Schwan,
H. Abbasi, and S. Klasky, “GoldRush: Resource Efficient in Situ
Scientific Data Analytics Using Fine-grained Interference Aware
Execution,” in Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, ser. SC
’13. New York, NY, USA: ACM, 2013, pp. 78:1–78:12. [Online].
Available: http://doi.acm.org/10.1145/2503210.2503279

[7] A. Agranovsky, D. Camp, C. Garth, E. Bethel, K. Joy, and H. Childs,
“Improved post hoc flow analysis via lagrangian representations,” in
Large Data Analysis and Visualization (LDAV), 2014 IEEE 4th Sympo-
sium on, Nov 2014, pp. 67–75.

[8] A. L. Love, A. Pang, and D. L. Kao, “Visualizing spatial multivalue
data,” IEEE Computer Graphics and Applications, vol. 25, no. 3, pp.
69–79, May 2005.

[9] A. T. Wilson and K. C. Potter, “Toward visual analysis of ensemble data
sets,” in Proceedings of the 2009 Workshop on Ultrascale Visualization,
ser. UltraVis ’09. New York, NY, USA: ACM, 2009, pp. 48–53.
[Online]. Available: http://doi.acm.org/10.1145/1838544.1838551

[10] EDF, E. France, and P. Engineering, “Openturns, http://www.openturns.
org.”

[11] Y. Fournier, J. Bonelle, C. Moulinec, Z. Shang, A. Sunderland,
and J. Uribe, “Optimizing code_saturne computations on petascale
systems,” Computers & Fluids, vol. 45, no. 1, pp. 103 – 108,
2011, 22nd International Conference on Parallel Computational
Fluid Dynamics (ParCFD 2010)ParCFD. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0045793011000351

[12] benjamin Lorendeau, Y. Fournier, and A. Ribes, “In Situ visualization in
fluid mechanics using Catalyst: a case study for Code_Saturne,” in IEEE
Symposium on Large Data Analysis and Visualization (LDAV), 2013.

[13] T. Finch, “Incremental calculation of weighted mean and variance,”
University of Cambridge, Tech. Rep., 2009.

[14] P. Hintjens, ZeroMQ, Messaging for Many Applications. O’Reilly
Media, 2013.

[15] N. Capit, G. D. Costa, Y. Georgiou, G. Huard, C. Martin, G. Mounié,
P. Neyron, and O. Richard., “A batch scheduler with high level compo-
nents,” in 5th International Symposium on Cluster Computing and the
Grid (CCGrid), 2005.

[16] M. C. Cera, Y. Georgiou, O. Richard, N. Maillard, and P. O. A.
Navaux, “Supporting MPI Malleable Applications upon the OAR
Resource Manager,” in Colibri : Colloque d’Informatique: Brésil /
INRIA, Coopérations, Avancées et Défis, Rio Grande do Sul, Brazil,
Jun. 2009. [Online]. Available: https://hal.inria.fr/hal-00691414

39

