From 0e217a4b283decfd04ba9b7bc564bccf4c29991a Mon Sep 17 00:00:00 2001 From: schroeder5 <s.schroeder@fz-juelich.de> Date: Mon, 3 Jun 2024 21:57:31 +0000 Subject: [PATCH] do the ML downscaling for the whole forecast length of the numerical simulation --- src/pages/dashboard.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/src/pages/dashboard.py b/src/pages/dashboard.py index 168ad1d..2247057 100644 --- a/src/pages/dashboard.py +++ b/src/pages/dashboard.py @@ -1333,6 +1333,7 @@ def ml_downscaling_output_download(download_button, job_dict, plot_dict): iscen = job_props['emis_scen'] iscen = iscen if (iscen) else 0 fc_length = job_props['forecast_length'] + forecast_hours = fc_length * 24 out_filenames = get_filenames(jobnr, year, month, day, iscen, fc_length) downscaling_fn = out_filenames["downscaling_filename"].format(variable=variable) downscaling_filename = str(DATA_PATH.joinpath(f'{downscaling_fn}')) @@ -1344,7 +1345,7 @@ def ml_downscaling_output_download(download_button, job_dict, plot_dict): credentials = uc_credentials.UsernamePassword(UNICORE_USER, UNICORE_PASSWORD) client = uc_client.Client(credentials, base_url) job_description = {'Executable': f"/p/project/cjicg21/{UNICORE_USER}/downscaling_destine_de370c/HPC_batch_scripts/inference_destine_test_{variable}.sh", - 'Arguments': [ f"{jobnr.upper()}/CTM/", year, month, day ] } + 'Arguments': [ f"{jobnr.upper()}/CTM/", year, month, day, str(forecast_hours) ] } job = client.new_job(job_description) # wait for the job to finish: while str(job.status) != 'JobStatus.SUCCESSFUL': -- GitLab