diff --git a/Zam347_scripts/DataPreprocess.sh b/Zam347_scripts/DataPreprocess.sh index 69c93115ab6af16c2a3bdd4060322c0785d3fdc4..764b949433702053b0889671ebc36880f01c690b 100755 --- a/Zam347_scripts/DataPreprocess.sh +++ b/Zam347_scripts/DataPreprocess.sh @@ -2,7 +2,7 @@ source_dir=/home/$USER/extractedData -destination_dir=/home/$USER/preprocessedData/era5-Y2015toY2017M01to12-64x64-74d00N71d00E-T_MSL_gph500/hickle +destination_dir=/home/$USER/preprocessedData/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/hickle declare -a years=("2017") for year in "${years[@]}"; @@ -11,7 +11,7 @@ for year in "${years[@]}"; echo "source_dir ${source_dir}/${year}" mpirun -np 2 python ../../workflow_parallel_frame_prediction/DataPreprocess/mpi_stager_v2_process_netCDF.py \ --source_dir ${source_dir}/${year}/ \ - --destination_dir ${destination_dir}/${year}/ --vars T2 MSL gph500 --lat_s 138 --lat_e 202 --lon_s 646 --lon_e 710 + --destination_dir ${destination_dir}/${year}/ --vars T2 MSL gph500 --lat_s 74 --lat_e 202 --lon_s 550 --lon_e 710 done python ../../workflow_parallel_frame_prediction/DataPreprocess/mpi_split_data_multi_years.py --destination_dir ${destination_dir} diff --git a/Zam347_scripts/DataPreprocess_to_tf.sh b/Zam347_scripts/DataPreprocess_to_tf.sh index 0c41cf6cad72c1f758c3d977440f6591b63fde35..608f95348b25c2169ae2963821639de8947c322b 100755 --- a/Zam347_scripts/DataPreprocess_to_tf.sh +++ b/Zam347_scripts/DataPreprocess_to_tf.sh @@ -1,4 +1,4 @@ #!/bin/bash -x -python ../video_prediction/datasets/era5_dataset_v2.py /home/${USER}/preprocessedData/era5-Y2015toY2017M01to12-64x64-74d00N71d00E-T_MSL_gph500/hickle/splits/ /home/${USER}/preprocessedData/era5-Y2015toY2017M01to12-64x64-74d00N71d00E-T_MSL_gph500/tfrecords/ -vars T2 MSL gph500 -height 64 -width 64 -seq_length 20 +python ../video_prediction/datasets/era5_dataset_v2.py /home/${USER}/preprocessedData/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/hickle/splits/ /home/${USER}/preprocessedData/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/tfrecords/ -vars T2 MSL gph500 -height 128 -width 160 -seq_length 20 diff --git a/Zam347_scripts/generate_era5-out.out b/Zam347_scripts/generate_era5-out.out index e8924e4f78a5fa943026cda0b4322ef58c8fab16..76b965d5fb62cd8e8c51731f8110c2b79ec1d25b 100644 --- a/Zam347_scripts/generate_era5-out.out +++ b/Zam347_scripts/generate_era5-out.out @@ -1,30 +1,594 @@ -temporal_dir: /home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-64x64-74d00N71d00E-T_MSL_gph500/hickle/splits/ -loading options from checkpoint /home/b.gong/models/era5-Y2015toY2017M01to12-64x64-74d00N71d00E-T_MSL_gph500/vae +temporal_dir: /home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/hickle/splits/ +loading options from checkpoint /home/b.gong/models/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/vae ----------------------------------- Options ------------------------------------ batch_size = 2 -checkpoint = /home/b.gong/models/era5-Y2015toY2017M01to12-64x64-74d00N71d00E-T_MSL_gph500/vae +checkpoint = /home/b.gong/models/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/vae dataset = era5 dataset_hparams = sequence_length=20 fps = 4 gif_length = None gpu_mem_frac = 0 -input_dir = /home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-64x64-74d00N71d00E-T_MSL_gph500/tfrecords +input_dir = /home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/tfrecords mode = test model = vae model_hparams = None num_epochs = 1 num_samples = None num_stochastic_samples = 1 -output_gif_dir = /home/b.gong/results/era5-Y2015toY2017M01to12-64x64-74d00N71d00E-T_MSL_gph500/vae -output_png_dir = /home/b.gong/results/era5-Y2015toY2017M01to12-64x64-74d00N71d00E-T_MSL_gph500/vae -results_dir = /home/b.gong/results/era5-Y2015toY2017M01to12-64x64-74d00N71d00E-T_MSL_gph500 -results_gif_dir = /home/b.gong/results/era5-Y2015toY2017M01to12-64x64-74d00N71d00E-T_MSL_gph500 -results_png_dir = /home/b.gong/results/era5-Y2015toY2017M01to12-64x64-74d00N71d00E-T_MSL_gph500 +output_gif_dir = /home/b.gong/results/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/vae +output_png_dir = /home/b.gong/results/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/vae +results_dir = /home/b.gong/results/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500 +results_gif_dir = /home/b.gong/results/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500 +results_png_dir = /home/b.gong/results/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500 seed = 7 ------------------------------------- End -------------------------------------- datset_class ERA5Dataset_v2 -FILENAMES ['/home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-64x64-74d00N71d00E-T_MSL_gph500/tfrecords/test/sequence_0_to_1.tfrecords', '/home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-64x64-74d00N71d00E-T_MSL_gph500/tfrecords/test/sequence_10_to_11.tfrecords', '/home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-64x64-74d00N71d00E-T_MSL_gph500/tfrecords/test/sequence_12_to_13.tfrecords', '/home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-64x64-74d00N71d00E-T_MSL_gph500/tfrecords/test/sequence_2_to_3.tfrecords', '/home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-64x64-74d00N71d00E-T_MSL_gph500/tfrecords/test/sequence_4_to_5.tfrecords', '/home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-64x64-74d00N71d00E-T_MSL_gph500/tfrecords/test/sequence_6_to_7.tfrecords', '/home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-64x64-74d00N71d00E-T_MSL_gph500/tfrecords/test/sequence_8_to_9.tfrecords'] -files ['/home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-64x64-74d00N71d00E-T_MSL_gph500/tfrecords/test/sequence_0_to_1.tfrecords', '/home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-64x64-74d00N71d00E-T_MSL_gph500/tfrecords/test/sequence_10_to_11.tfrecords', '/home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-64x64-74d00N71d00E-T_MSL_gph500/tfrecords/test/sequence_12_to_13.tfrecords', '/home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-64x64-74d00N71d00E-T_MSL_gph500/tfrecords/test/sequence_2_to_3.tfrecords', '/home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-64x64-74d00N71d00E-T_MSL_gph500/tfrecords/test/sequence_4_to_5.tfrecords', '/home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-64x64-74d00N71d00E-T_MSL_gph500/tfrecords/test/sequence_6_to_7.tfrecords', '/home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-64x64-74d00N71d00E-T_MSL_gph500/tfrecords/test/sequence_8_to_9.tfrecords'] +FILENAMES ['/home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/tfrecords/test/sequence_0_to_1.tfrecords', '/home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/tfrecords/test/sequence_10_to_11.tfrecords', '/home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/tfrecords/test/sequence_12_to_13.tfrecords', '/home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/tfrecords/test/sequence_2_to_3.tfrecords', '/home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/tfrecords/test/sequence_4_to_5.tfrecords', '/home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/tfrecords/test/sequence_6_to_7.tfrecords', '/home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/tfrecords/test/sequence_8_to_9.tfrecords'] +files ['/home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/tfrecords/test/sequence_0_to_1.tfrecords', '/home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/tfrecords/test/sequence_10_to_11.tfrecords', '/home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/tfrecords/test/sequence_12_to_13.tfrecords', '/home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/tfrecords/test/sequence_2_to_3.tfrecords', '/home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/tfrecords/test/sequence_4_to_5.tfrecords', '/home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/tfrecords/test/sequence_6_to_7.tfrecords', '/home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/tfrecords/test/sequence_8_to_9.tfrecords'] mode test -Parse features {'images/encoded': <tensorflow.python.framework.sparse_tensor.SparseTensor object at 0x7f71880c6b00>, 'channels': <tf.Tensor 'ParseSingleExample/ParseSingleExample:3' shape=() dtype=int64>, 'height': <tf.Tensor 'ParseSingleExample/ParseSingleExample:4' shape=() dtype=int64>, 'sequence_length': <tf.Tensor 'ParseSingleExample/ParseSingleExample:5' shape=() dtype=int64>, 'width': <tf.Tensor 'ParseSingleExample/ParseSingleExample:6' shape=() dtype=int64>} -Image shape 20, 64,64,3 +Parse features {'images/encoded': <tensorflow.python.framework.sparse_tensor.SparseTensor object at 0x7f4f87630b70>, 'channels': <tf.Tensor 'ParseSingleExample/ParseSingleExample:3' shape=() dtype=int64>, 'height': <tf.Tensor 'ParseSingleExample/ParseSingleExample:4' shape=() dtype=int64>, 'sequence_length': <tf.Tensor 'ParseSingleExample/ParseSingleExample:5' shape=() dtype=int64>, 'width': <tf.Tensor 'ParseSingleExample/ParseSingleExample:6' shape=() dtype=int64>} +Image shape 20, 128,160,3 +DBBUG: INPUT Tensor("strided_slice:0", shape=(2, 128, 160, 3), dtype=float32) +conv_layer activation function relu +DEBUG input shape (2, 128, 160, 3) +Encode_1_shape (2, 64, 80, 8) +conv_layer activation function relu +DEBUG input shape (2, 64, 80, 8) +Encode 2_shape, (2, 64, 80, 8) +conv_layer activation function relu +DEBUG input shape (2, 64, 80, 8) +Encode 3_shape, (2, 32, 40, 8) +Encode 4_shape, (2, 10240) +conv4_shape [2, 32, 40, 8] +latend variables z Tensor("add:0", shape=(2, 16), dtype=float32) +latend variables z2 Tensor("sq_0_deenc_fc1_fc/Relu:0", shape=(2, 10240), dtype=float32) +latend variables z3 Tensor("Reshape:0", shape=(2, 32, 40, 8), dtype=float32) +input_channel 8 +output_shape Tensor("sq_0_decode_5_trans_conv/stack:0", shape=(4,), dtype=int32) +Decode 5 shape (2, 64, 80, 8) +input_channel 8 +output_shape Tensor("sq_0_decode_6_trans_conv/stack:0", shape=(4,), dtype=int32) +input_channel 8 +output_shape Tensor("sq_0_decode_8_trans_conv/stack:0", shape=(4,), dtype=int32) +X_hat (2, 128, 160, 3) +DBBUG: INPUT Tensor("strided_slice_1:0", shape=(2, 128, 160, 3), dtype=float32) +conv_layer activation function relu +DEBUG input shape (2, 128, 160, 3) +Encode_1_shape (2, 64, 80, 8) +conv_layer activation function relu +DEBUG input shape (2, 64, 80, 8) +Encode 2_shape, (2, 64, 80, 8) +conv_layer activation function relu +DEBUG input shape (2, 64, 80, 8) +Encode 3_shape, (2, 32, 40, 8) +Encode 4_shape, (2, 10240) +conv4_shape [2, 32, 40, 8] +latend variables z Tensor("add_1:0", shape=(2, 16), dtype=float32) +latend variables z2 Tensor("sq_1_deenc_fc1_fc/Relu:0", shape=(2, 10240), dtype=float32) +latend variables z3 Tensor("Reshape_1:0", shape=(2, 32, 40, 8), dtype=float32) +input_channel 8 +output_shape Tensor("sq_1_decode_5_trans_conv/stack:0", shape=(4,), dtype=int32) +Decode 5 shape (2, 64, 80, 8) +input_channel 8 +output_shape Tensor("sq_1_decode_6_trans_conv/stack:0", shape=(4,), dtype=int32) +input_channel 8 +output_shape Tensor("sq_1_decode_8_trans_conv/stack:0", shape=(4,), dtype=int32) +X_hat (2, 128, 160, 3) +DBBUG: INPUT Tensor("strided_slice_2:0", shape=(2, 128, 160, 3), dtype=float32) +conv_layer activation function relu +DEBUG input shape (2, 128, 160, 3) +Encode_1_shape (2, 64, 80, 8) +conv_layer activation function relu +DEBUG input shape (2, 64, 80, 8) +Encode 2_shape, (2, 64, 80, 8) +conv_layer activation function relu +DEBUG input shape (2, 64, 80, 8) +Encode 3_shape, (2, 32, 40, 8) +Encode 4_shape, (2, 10240) +conv4_shape [2, 32, 40, 8] +latend variables z Tensor("add_2:0", shape=(2, 16), dtype=float32) +latend variables z2 Tensor("sq_2_deenc_fc1_fc/Relu:0", shape=(2, 10240), dtype=float32) +latend variables z3 Tensor("Reshape_2:0", shape=(2, 32, 40, 8), dtype=float32) +input_channel 8 +output_shape Tensor("sq_2_decode_5_trans_conv/stack:0", shape=(4,), dtype=int32) +Decode 5 shape (2, 64, 80, 8) +input_channel 8 +output_shape Tensor("sq_2_decode_6_trans_conv/stack:0", shape=(4,), dtype=int32) +input_channel 8 +output_shape Tensor("sq_2_decode_8_trans_conv/stack:0", shape=(4,), dtype=int32) +X_hat (2, 128, 160, 3) +DBBUG: INPUT Tensor("strided_slice_3:0", shape=(2, 128, 160, 3), dtype=float32) +conv_layer activation function relu +DEBUG input shape (2, 128, 160, 3) +Encode_1_shape (2, 64, 80, 8) +conv_layer activation function relu +DEBUG input shape (2, 64, 80, 8) +Encode 2_shape, (2, 64, 80, 8) +conv_layer activation function relu +DEBUG input shape (2, 64, 80, 8) +Encode 3_shape, (2, 32, 40, 8) +Encode 4_shape, (2, 10240) +conv4_shape [2, 32, 40, 8] +latend variables z Tensor("add_3:0", shape=(2, 16), dtype=float32) +latend variables z2 Tensor("sq_3_deenc_fc1_fc/Relu:0", shape=(2, 10240), dtype=float32) +latend variables z3 Tensor("Reshape_3:0", shape=(2, 32, 40, 8), dtype=float32) +input_channel 8 +output_shape Tensor("sq_3_decode_5_trans_conv/stack:0", shape=(4,), dtype=int32) +Decode 5 shape (2, 64, 80, 8) +input_channel 8 +output_shape Tensor("sq_3_decode_6_trans_conv/stack:0", shape=(4,), dtype=int32) +input_channel 8 +output_shape Tensor("sq_3_decode_8_trans_conv/stack:0", shape=(4,), dtype=int32) +X_hat (2, 128, 160, 3) +DBBUG: INPUT Tensor("strided_slice_4:0", shape=(2, 128, 160, 3), dtype=float32) +conv_layer activation function relu +DEBUG input shape (2, 128, 160, 3) +Encode_1_shape (2, 64, 80, 8) +conv_layer activation function relu +DEBUG input shape (2, 64, 80, 8) +Encode 2_shape, (2, 64, 80, 8) +conv_layer activation function relu +DEBUG input shape (2, 64, 80, 8) +Encode 3_shape, (2, 32, 40, 8) +Encode 4_shape, (2, 10240) +conv4_shape [2, 32, 40, 8] +latend variables z Tensor("add_4:0", shape=(2, 16), dtype=float32) +latend variables z2 Tensor("sq_4_deenc_fc1_fc/Relu:0", shape=(2, 10240), dtype=float32) +latend variables z3 Tensor("Reshape_4:0", shape=(2, 32, 40, 8), dtype=float32) +input_channel 8 +output_shape Tensor("sq_4_decode_5_trans_conv/stack:0", shape=(4,), dtype=int32) +Decode 5 shape (2, 64, 80, 8) +input_channel 8 +output_shape Tensor("sq_4_decode_6_trans_conv/stack:0", shape=(4,), dtype=int32) +input_channel 8 +output_shape Tensor("sq_4_decode_8_trans_conv/stack:0", shape=(4,), dtype=int32) +X_hat (2, 128, 160, 3) +DBBUG: INPUT Tensor("strided_slice_5:0", shape=(2, 128, 160, 3), dtype=float32) +conv_layer activation function relu +DEBUG input shape (2, 128, 160, 3) +Encode_1_shape (2, 64, 80, 8) +conv_layer activation function relu +DEBUG input shape (2, 64, 80, 8) +Encode 2_shape, (2, 64, 80, 8) +conv_layer activation function relu +DEBUG input shape (2, 64, 80, 8) +Encode 3_shape, (2, 32, 40, 8) +Encode 4_shape, (2, 10240) +conv4_shape [2, 32, 40, 8] +latend variables z Tensor("add_5:0", shape=(2, 16), dtype=float32) +latend variables z2 Tensor("sq_5_deenc_fc1_fc/Relu:0", shape=(2, 10240), dtype=float32) +latend variables z3 Tensor("Reshape_5:0", shape=(2, 32, 40, 8), dtype=float32) +input_channel 8 +output_shape Tensor("sq_5_decode_5_trans_conv/stack:0", shape=(4,), dtype=int32) +Decode 5 shape (2, 64, 80, 8) +input_channel 8 +output_shape Tensor("sq_5_decode_6_trans_conv/stack:0", shape=(4,), dtype=int32) +input_channel 8 +output_shape Tensor("sq_5_decode_8_trans_conv/stack:0", shape=(4,), dtype=int32) +X_hat (2, 128, 160, 3) +DBBUG: INPUT Tensor("strided_slice_6:0", shape=(2, 128, 160, 3), dtype=float32) +conv_layer activation function relu +DEBUG input shape (2, 128, 160, 3) +Encode_1_shape (2, 64, 80, 8) +conv_layer activation function relu +DEBUG input shape (2, 64, 80, 8) +Encode 2_shape, (2, 64, 80, 8) +conv_layer activation function relu +DEBUG input shape (2, 64, 80, 8) +Encode 3_shape, (2, 32, 40, 8) +Encode 4_shape, (2, 10240) +conv4_shape [2, 32, 40, 8] +latend variables z Tensor("add_6:0", shape=(2, 16), dtype=float32) +latend variables z2 Tensor("sq_6_deenc_fc1_fc/Relu:0", shape=(2, 10240), dtype=float32) +latend variables z3 Tensor("Reshape_6:0", shape=(2, 32, 40, 8), dtype=float32) +input_channel 8 +output_shape Tensor("sq_6_decode_5_trans_conv/stack:0", shape=(4,), dtype=int32) +Decode 5 shape (2, 64, 80, 8) +input_channel 8 +output_shape Tensor("sq_6_decode_6_trans_conv/stack:0", shape=(4,), dtype=int32) +input_channel 8 +output_shape Tensor("sq_6_decode_8_trans_conv/stack:0", shape=(4,), dtype=int32) +X_hat (2, 128, 160, 3) +DBBUG: INPUT Tensor("strided_slice_7:0", shape=(2, 128, 160, 3), dtype=float32) +conv_layer activation function relu +DEBUG input shape (2, 128, 160, 3) +Encode_1_shape (2, 64, 80, 8) +conv_layer activation function relu +DEBUG input shape (2, 64, 80, 8) +Encode 2_shape, (2, 64, 80, 8) +conv_layer activation function relu +DEBUG input shape (2, 64, 80, 8) +Encode 3_shape, (2, 32, 40, 8) +Encode 4_shape, (2, 10240) +conv4_shape [2, 32, 40, 8] +latend variables z Tensor("add_7:0", shape=(2, 16), dtype=float32) +latend variables z2 Tensor("sq_7_deenc_fc1_fc/Relu:0", shape=(2, 10240), dtype=float32) +latend variables z3 Tensor("Reshape_7:0", shape=(2, 32, 40, 8), dtype=float32) +input_channel 8 +output_shape Tensor("sq_7_decode_5_trans_conv/stack:0", shape=(4,), dtype=int32) +Decode 5 shape (2, 64, 80, 8) +input_channel 8 +output_shape Tensor("sq_7_decode_6_trans_conv/stack:0", shape=(4,), dtype=int32) +input_channel 8 +output_shape Tensor("sq_7_decode_8_trans_conv/stack:0", shape=(4,), dtype=int32) +X_hat (2, 128, 160, 3) +DBBUG: INPUT Tensor("strided_slice_8:0", shape=(2, 128, 160, 3), dtype=float32) +conv_layer activation function relu +DEBUG input shape (2, 128, 160, 3) +Encode_1_shape (2, 64, 80, 8) +conv_layer activation function relu +DEBUG input shape (2, 64, 80, 8) +Encode 2_shape, (2, 64, 80, 8) +conv_layer activation function relu +DEBUG input shape (2, 64, 80, 8) +Encode 3_shape, (2, 32, 40, 8) +Encode 4_shape, (2, 10240) +conv4_shape [2, 32, 40, 8] +latend variables z Tensor("add_8:0", shape=(2, 16), dtype=float32) +latend variables z2 Tensor("sq_8_deenc_fc1_fc/Relu:0", shape=(2, 10240), dtype=float32) +latend variables z3 Tensor("Reshape_8:0", shape=(2, 32, 40, 8), dtype=float32) +input_channel 8 +output_shape Tensor("sq_8_decode_5_trans_conv/stack:0", shape=(4,), dtype=int32) +Decode 5 shape (2, 64, 80, 8) +input_channel 8 +output_shape Tensor("sq_8_decode_6_trans_conv/stack:0", shape=(4,), dtype=int32) +input_channel 8 +output_shape Tensor("sq_8_decode_8_trans_conv/stack:0", shape=(4,), dtype=int32) +X_hat (2, 128, 160, 3) +DBBUG: INPUT Tensor("strided_slice_9:0", shape=(2, 128, 160, 3), dtype=float32) +conv_layer activation function relu +DEBUG input shape (2, 128, 160, 3) +Encode_1_shape (2, 64, 80, 8) +conv_layer activation function relu +DEBUG input shape (2, 64, 80, 8) +Encode 2_shape, (2, 64, 80, 8) +conv_layer activation function relu +DEBUG input shape (2, 64, 80, 8) +Encode 3_shape, (2, 32, 40, 8) +Encode 4_shape, (2, 10240) +conv4_shape [2, 32, 40, 8] +latend variables z Tensor("add_9:0", shape=(2, 16), dtype=float32) +latend variables z2 Tensor("sq_9_deenc_fc1_fc/Relu:0", shape=(2, 10240), dtype=float32) +latend variables z3 Tensor("Reshape_9:0", shape=(2, 32, 40, 8), dtype=float32) +input_channel 8 +output_shape Tensor("sq_9_decode_5_trans_conv/stack:0", shape=(4,), dtype=int32) +Decode 5 shape (2, 64, 80, 8) +input_channel 8 +output_shape Tensor("sq_9_decode_6_trans_conv/stack:0", shape=(4,), dtype=int32) +input_channel 8 +output_shape Tensor("sq_9_decode_8_trans_conv/stack:0", shape=(4,), dtype=int32) +X_hat (2, 128, 160, 3) +DBBUG: INPUT Tensor("strided_slice_10:0", shape=(2, 128, 160, 3), dtype=float32) +conv_layer activation function relu +DEBUG input shape (2, 128, 160, 3) +Encode_1_shape (2, 64, 80, 8) +conv_layer activation function relu +DEBUG input shape (2, 64, 80, 8) +Encode 2_shape, (2, 64, 80, 8) +conv_layer activation function relu +DEBUG input shape (2, 64, 80, 8) +Encode 3_shape, (2, 32, 40, 8) +Encode 4_shape, (2, 10240) +conv4_shape [2, 32, 40, 8] +latend variables z Tensor("add_10:0", shape=(2, 16), dtype=float32) +latend variables z2 Tensor("sq_10_deenc_fc1_fc/Relu:0", shape=(2, 10240), dtype=float32) +latend variables z3 Tensor("Reshape_10:0", shape=(2, 32, 40, 8), dtype=float32) +input_channel 8 +output_shape Tensor("sq_10_decode_5_trans_conv/stack:0", shape=(4,), dtype=int32) +Decode 5 shape (2, 64, 80, 8) +input_channel 8 +output_shape Tensor("sq_10_decode_6_trans_conv/stack:0", shape=(4,), dtype=int32) +input_channel 8 +output_shape Tensor("sq_10_decode_8_trans_conv/stack:0", shape=(4,), dtype=int32) +X_hat (2, 128, 160, 3) +DBBUG: INPUT Tensor("strided_slice_11:0", shape=(2, 128, 160, 3), dtype=float32) +conv_layer activation function relu +DEBUG input shape (2, 128, 160, 3) +Encode_1_shape (2, 64, 80, 8) +conv_layer activation function relu +DEBUG input shape (2, 64, 80, 8) +Encode 2_shape, (2, 64, 80, 8) +conv_layer activation function relu +DEBUG input shape (2, 64, 80, 8) +Encode 3_shape, (2, 32, 40, 8) +Encode 4_shape, (2, 10240) +conv4_shape [2, 32, 40, 8] +latend variables z Tensor("add_11:0", shape=(2, 16), dtype=float32) +latend variables z2 Tensor("sq_11_deenc_fc1_fc/Relu:0", shape=(2, 10240), dtype=float32) +latend variables z3 Tensor("Reshape_11:0", shape=(2, 32, 40, 8), dtype=float32) +input_channel 8 +output_shape Tensor("sq_11_decode_5_trans_conv/stack:0", shape=(4,), dtype=int32) +Decode 5 shape (2, 64, 80, 8) +input_channel 8 +output_shape Tensor("sq_11_decode_6_trans_conv/stack:0", shape=(4,), dtype=int32) +input_channel 8 +output_shape Tensor("sq_11_decode_8_trans_conv/stack:0", shape=(4,), dtype=int32) +X_hat (2, 128, 160, 3) +DBBUG: INPUT Tensor("strided_slice_12:0", shape=(2, 128, 160, 3), dtype=float32) +conv_layer activation function relu +DEBUG input shape (2, 128, 160, 3) +Encode_1_shape (2, 64, 80, 8) +conv_layer activation function relu +DEBUG input shape (2, 64, 80, 8) +Encode 2_shape, (2, 64, 80, 8) +conv_layer activation function relu +DEBUG input shape (2, 64, 80, 8) +Encode 3_shape, (2, 32, 40, 8) +Encode 4_shape, (2, 10240) +conv4_shape [2, 32, 40, 8] +latend variables z Tensor("add_12:0", shape=(2, 16), dtype=float32) +latend variables z2 Tensor("sq_12_deenc_fc1_fc/Relu:0", shape=(2, 10240), dtype=float32) +latend variables z3 Tensor("Reshape_12:0", shape=(2, 32, 40, 8), dtype=float32) +input_channel 8 +output_shape Tensor("sq_12_decode_5_trans_conv/stack:0", shape=(4,), dtype=int32) +Decode 5 shape (2, 64, 80, 8) +input_channel 8 +output_shape Tensor("sq_12_decode_6_trans_conv/stack:0", shape=(4,), dtype=int32) +input_channel 8 +output_shape Tensor("sq_12_decode_8_trans_conv/stack:0", shape=(4,), dtype=int32) +X_hat (2, 128, 160, 3) +DBBUG: INPUT Tensor("strided_slice_13:0", shape=(2, 128, 160, 3), dtype=float32) +conv_layer activation function relu +DEBUG input shape (2, 128, 160, 3) +Encode_1_shape (2, 64, 80, 8) +conv_layer activation function relu +DEBUG input shape (2, 64, 80, 8) +Encode 2_shape, (2, 64, 80, 8) +conv_layer activation function relu +DEBUG input shape (2, 64, 80, 8) +Encode 3_shape, (2, 32, 40, 8) +Encode 4_shape, (2, 10240) +conv4_shape [2, 32, 40, 8] +latend variables z Tensor("add_13:0", shape=(2, 16), dtype=float32) +latend variables z2 Tensor("sq_13_deenc_fc1_fc/Relu:0", shape=(2, 10240), dtype=float32) +latend variables z3 Tensor("Reshape_13:0", shape=(2, 32, 40, 8), dtype=float32) +input_channel 8 +output_shape Tensor("sq_13_decode_5_trans_conv/stack:0", shape=(4,), dtype=int32) +Decode 5 shape (2, 64, 80, 8) +input_channel 8 +output_shape Tensor("sq_13_decode_6_trans_conv/stack:0", shape=(4,), dtype=int32) +input_channel 8 +output_shape Tensor("sq_13_decode_8_trans_conv/stack:0", shape=(4,), dtype=int32) +X_hat (2, 128, 160, 3) +DBBUG: INPUT Tensor("strided_slice_14:0", shape=(2, 128, 160, 3), dtype=float32) +conv_layer activation function relu +DEBUG input shape (2, 128, 160, 3) +Encode_1_shape (2, 64, 80, 8) +conv_layer activation function relu +DEBUG input shape (2, 64, 80, 8) +Encode 2_shape, (2, 64, 80, 8) +conv_layer activation function relu +DEBUG input shape (2, 64, 80, 8) +Encode 3_shape, (2, 32, 40, 8) +Encode 4_shape, (2, 10240) +conv4_shape [2, 32, 40, 8] +latend variables z Tensor("add_14:0", shape=(2, 16), dtype=float32) +latend variables z2 Tensor("sq_14_deenc_fc1_fc/Relu:0", shape=(2, 10240), dtype=float32) +latend variables z3 Tensor("Reshape_14:0", shape=(2, 32, 40, 8), dtype=float32) +input_channel 8 +output_shape Tensor("sq_14_decode_5_trans_conv/stack:0", shape=(4,), dtype=int32) +Decode 5 shape (2, 64, 80, 8) +input_channel 8 +output_shape Tensor("sq_14_decode_6_trans_conv/stack:0", shape=(4,), dtype=int32) +input_channel 8 +output_shape Tensor("sq_14_decode_8_trans_conv/stack:0", shape=(4,), dtype=int32) +X_hat (2, 128, 160, 3) +DBBUG: INPUT Tensor("strided_slice_15:0", shape=(2, 128, 160, 3), dtype=float32) +conv_layer activation function relu +DEBUG input shape (2, 128, 160, 3) +Encode_1_shape (2, 64, 80, 8) +conv_layer activation function relu +DEBUG input shape (2, 64, 80, 8) +Encode 2_shape, (2, 64, 80, 8) +conv_layer activation function relu +DEBUG input shape (2, 64, 80, 8) +Encode 3_shape, (2, 32, 40, 8) +Encode 4_shape, (2, 10240) +conv4_shape [2, 32, 40, 8] +latend variables z Tensor("add_15:0", shape=(2, 16), dtype=float32) +latend variables z2 Tensor("sq_15_deenc_fc1_fc/Relu:0", shape=(2, 10240), dtype=float32) +latend variables z3 Tensor("Reshape_15:0", shape=(2, 32, 40, 8), dtype=float32) +input_channel 8 +output_shape Tensor("sq_15_decode_5_trans_conv/stack:0", shape=(4,), dtype=int32) +Decode 5 shape (2, 64, 80, 8) +input_channel 8 +output_shape Tensor("sq_15_decode_6_trans_conv/stack:0", shape=(4,), dtype=int32) +input_channel 8 +output_shape Tensor("sq_15_decode_8_trans_conv/stack:0", shape=(4,), dtype=int32) +X_hat (2, 128, 160, 3) +DBBUG: INPUT Tensor("strided_slice_16:0", shape=(2, 128, 160, 3), dtype=float32) +conv_layer activation function relu +DEBUG input shape (2, 128, 160, 3) +Encode_1_shape (2, 64, 80, 8) +conv_layer activation function relu +DEBUG input shape (2, 64, 80, 8) +Encode 2_shape, (2, 64, 80, 8) +conv_layer activation function relu +DEBUG input shape (2, 64, 80, 8) +Encode 3_shape, (2, 32, 40, 8) +Encode 4_shape, (2, 10240) +conv4_shape [2, 32, 40, 8] +latend variables z Tensor("add_16:0", shape=(2, 16), dtype=float32) +latend variables z2 Tensor("sq_16_deenc_fc1_fc/Relu:0", shape=(2, 10240), dtype=float32) +latend variables z3 Tensor("Reshape_16:0", shape=(2, 32, 40, 8), dtype=float32) +input_channel 8 +output_shape Tensor("sq_16_decode_5_trans_conv/stack:0", shape=(4,), dtype=int32) +Decode 5 shape (2, 64, 80, 8) +input_channel 8 +output_shape Tensor("sq_16_decode_6_trans_conv/stack:0", shape=(4,), dtype=int32) +input_channel 8 +output_shape Tensor("sq_16_decode_8_trans_conv/stack:0", shape=(4,), dtype=int32) +X_hat (2, 128, 160, 3) +DBBUG: INPUT Tensor("strided_slice_17:0", shape=(2, 128, 160, 3), dtype=float32) +conv_layer activation function relu +DEBUG input shape (2, 128, 160, 3) +Encode_1_shape (2, 64, 80, 8) +conv_layer activation function relu +DEBUG input shape (2, 64, 80, 8) +Encode 2_shape, (2, 64, 80, 8) +conv_layer activation function relu +DEBUG input shape (2, 64, 80, 8) +Encode 3_shape, (2, 32, 40, 8) +Encode 4_shape, (2, 10240) +conv4_shape [2, 32, 40, 8] +latend variables z Tensor("add_17:0", shape=(2, 16), dtype=float32) +latend variables z2 Tensor("sq_17_deenc_fc1_fc/Relu:0", shape=(2, 10240), dtype=float32) +latend variables z3 Tensor("Reshape_17:0", shape=(2, 32, 40, 8), dtype=float32) +input_channel 8 +output_shape Tensor("sq_17_decode_5_trans_conv/stack:0", shape=(4,), dtype=int32) +Decode 5 shape (2, 64, 80, 8) +input_channel 8 +output_shape Tensor("sq_17_decode_6_trans_conv/stack:0", shape=(4,), dtype=int32) +input_channel 8 +output_shape Tensor("sq_17_decode_8_trans_conv/stack:0", shape=(4,), dtype=int32) +X_hat (2, 128, 160, 3) +DBBUG: INPUT Tensor("strided_slice_18:0", shape=(2, 128, 160, 3), dtype=float32) +conv_layer activation function relu +DEBUG input shape (2, 128, 160, 3) +Encode_1_shape (2, 64, 80, 8) +conv_layer activation function relu +DEBUG input shape (2, 64, 80, 8) +Encode 2_shape, (2, 64, 80, 8) +conv_layer activation function relu +DEBUG input shape (2, 64, 80, 8) +Encode 3_shape, (2, 32, 40, 8) +Encode 4_shape, (2, 10240) +conv4_shape [2, 32, 40, 8] +latend variables z Tensor("add_18:0", shape=(2, 16), dtype=float32) +latend variables z2 Tensor("sq_18_deenc_fc1_fc/Relu:0", shape=(2, 10240), dtype=float32) +latend variables z3 Tensor("Reshape_18:0", shape=(2, 32, 40, 8), dtype=float32) +input_channel 8 +output_shape Tensor("sq_18_decode_5_trans_conv/stack:0", shape=(4,), dtype=int32) +Decode 5 shape (2, 64, 80, 8) +input_channel 8 +output_shape Tensor("sq_18_decode_6_trans_conv/stack:0", shape=(4,), dtype=int32) +input_channel 8 +output_shape Tensor("sq_18_decode_8_trans_conv/stack:0", shape=(4,), dtype=int32) +X_hat (2, 128, 160, 3) +DBBUG: INPUT Tensor("strided_slice_19:0", shape=(2, 128, 160, 3), dtype=float32) +conv_layer activation function relu +DEBUG input shape (2, 128, 160, 3) +Encode_1_shape (2, 64, 80, 8) +conv_layer activation function relu +DEBUG input shape (2, 64, 80, 8) +Encode 2_shape, (2, 64, 80, 8) +conv_layer activation function relu +DEBUG input shape (2, 64, 80, 8) +Encode 3_shape, (2, 32, 40, 8) +Encode 4_shape, (2, 10240) +conv4_shape [2, 32, 40, 8] +latend variables z Tensor("add_19:0", shape=(2, 16), dtype=float32) +latend variables z2 Tensor("sq_19_deenc_fc1_fc/Relu:0", shape=(2, 10240), dtype=float32) +latend variables z3 Tensor("Reshape_19:0", shape=(2, 32, 40, 8), dtype=float32) +input_channel 8 +output_shape Tensor("sq_19_decode_5_trans_conv/stack:0", shape=(4,), dtype=int32) +Decode 5 shape (2, 64, 80, 8) +input_channel 8 +output_shape Tensor("sq_19_decode_6_trans_conv/stack:0", shape=(4,), dtype=int32) +input_channel 8 +output_shape Tensor("sq_19_decode_8_trans_conv/stack:0", shape=(4,), dtype=int32) +X_hat (2, 128, 160, 3) +X_hat (2, 20, 128, 160, 3) +zlog_sigma_sq_all (2, 20, 16) +creating restore saver from checkpoint /home/b.gong/models/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/vae +temporal_dir: /home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/hickle/splits/ +test temporal_pkl file looks like folowing [[cftime.DatetimeGregorian(2017-02-01 00:00:00)] + [cftime.DatetimeGregorian(2017-02-01 01:00:00)] + [cftime.DatetimeGregorian(2017-02-01 02:00:00)] + [cftime.DatetimeGregorian(2017-02-01 03:00:00)] + [cftime.DatetimeGregorian(2017-02-01 04:00:00)] + [cftime.DatetimeGregorian(2017-02-01 05:00:00)] + [cftime.DatetimeGregorian(2017-02-01 06:00:00)] + [cftime.DatetimeGregorian(2017-02-01 07:00:00)] + [cftime.DatetimeGregorian(2017-02-01 08:00:00)] + [cftime.DatetimeGregorian(2017-02-01 09:00:00)] + [cftime.DatetimeGregorian(2017-02-01 10:00:00)] + [cftime.DatetimeGregorian(2017-02-01 11:00:00)] + [cftime.DatetimeGregorian(2017-02-01 12:00:00)] + [cftime.DatetimeGregorian(2017-02-01 13:00:00)] + [cftime.DatetimeGregorian(2017-02-01 14:00:00)] + [cftime.DatetimeGregorian(2017-02-01 15:00:00)] + [cftime.DatetimeGregorian(2017-02-01 16:00:00)] + [cftime.DatetimeGregorian(2017-02-01 17:00:00)] + [cftime.DatetimeGregorian(2017-02-01 18:00:00)] + [cftime.DatetimeGregorian(2017-02-01 19:00:00)] + [cftime.DatetimeGregorian(2017-02-01 20:00:00)] + [cftime.DatetimeGregorian(2017-02-01 21:00:00)] + [cftime.DatetimeGregorian(2017-02-01 22:00:00)] + [cftime.DatetimeGregorian(2017-02-01 23:00:00)] + [cftime.DatetimeGregorian(2017-02-02 00:00:00)] + [cftime.DatetimeGregorian(2017-02-02 01:00:00)] + [cftime.DatetimeGregorian(2017-02-02 02:00:00)] + [cftime.DatetimeGregorian(2017-02-02 03:00:00)] + [cftime.DatetimeGregorian(2017-02-02 04:00:00)] + [cftime.DatetimeGregorian(2017-02-02 05:00:00)] + [cftime.DatetimeGregorian(2017-02-02 06:00:00)] + [cftime.DatetimeGregorian(2017-02-02 07:00:00)] + [cftime.DatetimeGregorian(2017-02-02 08:00:00)] + [cftime.DatetimeGregorian(2017-02-02 09:00:00)]] +Sample id 0 +Sample id 2 +Sample id 4 +Sample id 6 +Sample id 8 +Sample id 10 +Sample id 12 +Sample id 14 +Sample id 16 +Sample id 18 +Sample id 20 +Sample id 22 +Sample id 24 +Sample id 26 +timestamp: <class 'numpy.ndarray'> +persistent ts [cftime.DatetimeGregorian(2017-02-01 02:00:00)] +persistent index in test set: 2 +persistent_X.shape (20, 128, 160, 3) +name _Stochastic_id_0_Time_20170202-020000 +timestamp: <class 'numpy.ndarray'> +persistent ts [cftime.DatetimeGregorian(2017-02-01 03:00:00)] +persistent index in test set: 3 +persistent_X.shape (20, 128, 160, 3) +name _Stochastic_id_0_Time_20170202-030000 +Save persistent all +Save generate all +Sample id 28 +timestamp: <class 'numpy.ndarray'> +persistent ts [cftime.DatetimeGregorian(2017-02-01 04:00:00)] +persistent index in test set: 4 +persistent_X.shape (20, 128, 160, 3) +name _Stochastic_id_0_Time_20170202-040000 +timestamp: <class 'numpy.ndarray'> +persistent ts [cftime.DatetimeGregorian(2017-02-01 05:00:00)] +persistent index in test set: 5 +persistent_X.shape (20, 128, 160, 3) +name _Stochastic_id_0_Time_20170202-050000 +Save persistent all +Save generate all +Sample id 30 +timestamp: <class 'numpy.ndarray'> +persistent ts [cftime.DatetimeGregorian(2017-02-01 06:00:00)] +persistent index in test set: 6 +persistent_X.shape (20, 128, 160, 3) +name _Stochastic_id_0_Time_20170202-060000 +timestamp: <class 'numpy.ndarray'> +persistent ts [cftime.DatetimeGregorian(2017-02-01 07:00:00)] +persistent index in test set: 7 +persistent_X.shape (20, 128, 160, 3) +name _Stochastic_id_0_Time_20170202-070000 +Save persistent all +Save generate all +Sample id 32 +timestamp: <class 'numpy.ndarray'> +persistent ts [cftime.DatetimeGregorian(2017-02-01 08:00:00)] +persistent index in test set: 8 +persistent_X.shape (20, 128, 160, 3) +name _Stochastic_id_0_Time_20170202-080000 +timestamp: <class 'numpy.ndarray'> +persistent ts [cftime.DatetimeGregorian(2017-02-01 09:00:00)] +persistent index in test set: 9 +persistent_X.shape (20, 128, 160, 3) +name _Stochastic_id_0_Time_20170202-090000 +Save persistent all +Save generate all +Sample id 34 diff --git a/Zam347_scripts/generate_era5.sh b/Zam347_scripts/generate_era5.sh index 42c496bb89282348539ac8a27019d040505213fb..2d95bf49839c5b238321c9aec45d8cb606f97c34 100755 --- a/Zam347_scripts/generate_era5.sh +++ b/Zam347_scripts/generate_era5.sh @@ -2,9 +2,9 @@ python -u ../scripts/generate_transfer_learning_finetune.py \ ---input_dir /home/${USER}/preprocessedData/era5-Y2015toY2017M01to12-64x64-74d00N71d00E-T_MSL_gph500/tfrecords \ ---dataset_hparams sequence_length=20 --checkpoint /home/${USER}/models/era5-Y2015toY2017M01to12-64x64-74d00N71d00E-T_MSL_gph500/vae \ ---mode test --results_dir /home/${USER}/results/era5-Y2015toY2017M01to12-64x64-74d00N71d00E-T_MSL_gph500 \ +--input_dir /home/${USER}/preprocessedData/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/tfrecords \ +--dataset_hparams sequence_length=20 --checkpoint /home/${USER}/models/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/vae \ +--mode test --results_dir /home/${USER}/results/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500 \ --batch_size 2 --dataset era5 > generate_era5-out.out #srun python scripts/train.py --input_dir data/era5 --dataset era5 --model savp --model_hparams_dict hparams/kth/ours_savp/model_hparams.json --output_dir logs/era5/ours_savp diff --git a/Zam347_scripts/train_vae.sh b/Zam347_scripts/train_vae.sh index b507d5c6afd266bc0d4b8a7dcfdd5e34cea495ab..c09f0b7fd8874efde6b2e1ae45866cc098391c5a 100755 --- a/Zam347_scripts/train_vae.sh +++ b/Zam347_scripts/train_vae.sh @@ -2,5 +2,5 @@ -python ../scripts/train_dummy.py --input_dir /home/${USER}/preprocessedData/era5-Y2015toY2017M01to12-64x64-74d00N71d00E-T_MSL_gph500/tfrecords --dataset era5 --model vae --model_hparams_dict ../hparams/kth/ours_savp/model_hparams.json --output_dir /home/${USER}/models/era5-Y2015toY2017M01to12-64x64-74d00N71d00E-T_MSL_gph500/vae +python ../scripts/train_dummy.py --input_dir /home/${USER}/preprocessedData/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/tfrecords --dataset era5 --model vae --model_hparams_dict ../hparams/era5/vae/model_hparams.json --output_dir /home/${USER}/models/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/vae #srun python scripts/train.py --input_dir data/era5 --dataset era5 --model savp --model_hparams_dict hparams/kth/ours_savp/model_hparams.json --output_dir logs/era5/ours_savp diff --git a/env_setup/create_env_zam347.sh b/env_setup/create_env_zam347.sh index c2a7b4e2315514ec551f81063ac7f7087a360235..95da5f2a7ed86183916d58a3c266846e6f0ca42b 100755 --- a/env_setup/create_env_zam347.sh +++ b/env_setup/create_env_zam347.sh @@ -22,7 +22,7 @@ pip3 install mpi4py pip3 install netCDF4 pip3 install numpy pip3 install h5py -pip3 install tensorflow-gpu==1.14.0 +pip3 install tensorflow-gpu==1.13.1 #Copy the hickle package from bing's account #cp -r /p/project/deepacf/deeprain/bing/hickle ${WORKING_DIR} diff --git a/hparams/era5/vae/model_hparams.json b/hparams/era5/vae/model_hparams.json index be9e05e6bb2cee5870f090b3a05edbd401755af7..2e9406148e140054ced5e0c4311f3885aa47f728 100644 --- a/hparams/era5/vae/model_hparams.json +++ b/hparams/era5/vae/model_hparams.json @@ -1,7 +1,7 @@ { "batch_size": 8, "lr": 0.0002, - "nz": 32, + "nz": 16, "max_steps":20 } diff --git a/video_prediction/models/vanilla_vae_model.py b/video_prediction/models/vanilla_vae_model.py index c2e6d959964aad35db55d677bde87b98bfde5d11..7eec886c462cab73e3bf9ef5260fc29ea06ec34b 100644 --- a/video_prediction/models/vanilla_vae_model.py +++ b/video_prediction/models/vanilla_vae_model.py @@ -21,20 +21,11 @@ class VanillaVAEVideoPredictionModel(BaseVideoPredictionModel): super(VanillaVAEVideoPredictionModel, self).__init__(mode, hparams_dict, hparams, **kwargs) self.mode = mode self.learning_rate = self.hparams.lr + self.nz = self.hparams.nz self.aggregate_nccl=aggregate_nccl self.gen_images_enc = None - self.g_losses = None - self.d_losses = None - self.g_loss = None - self.d_loss = None - self.g_vars = None - self.d_vars = None self.train_op = None self.summary_op = None - self.image_summary_op = None - self.eval_summary_op = None - self.accum_eval_summary_op = None - self.accum_eval_metrics_reset_op = None self.recon_loss = None self.latent_loss = None self.total_loss = None @@ -65,6 +56,7 @@ class VanillaVAEVideoPredictionModel(BaseVideoPredictionModel): specified during instantiation. """ default_hparams = super(VanillaVAEVideoPredictionModel, self).get_default_hparams_dict() + print ("default hparams",default_hparams) hparams = dict( batch_size=16, lr=0.001, @@ -73,35 +65,9 @@ class VanillaVAEVideoPredictionModel(BaseVideoPredictionModel): lr_boundaries=(0,), max_steps=350000, nz=10, - beta1=0.9, - beta2=0.999, context_frames=-1, sequence_length=-1, clip_length=10, #Bing: TODO What is the clip_length, original is 10, - l1_weight=0.0, - l2_weight=1.0, - vgg_cdist_weight=0.0, - feature_l2_weight=0.0, - ae_l2_weight=0.0, - state_weight=0.0, - tv_weight=0.0, - image_sn_gan_weight=0.0, - image_sn_vae_gan_weight=0.0, - images_sn_gan_weight=0.0, - images_sn_vae_gan_weight=0.0, - video_sn_gan_weight=0.0, - video_sn_vae_gan_weight=0.0, - gan_feature_l2_weight=0.0, - gan_feature_cdist_weight=0.0, - vae_gan_feature_l2_weight=0.0, - vae_gan_feature_cdist_weight=0.0, - gan_loss_type='LSGAN', - joint_gan_optimization=False, - kl_weight=0.0, - kl_anneal='linear', - kl_anneal_k=-1.0, - kl_anneal_steps=(50000, 100000), - z_l1_weight=0.0, ) return dict(itertools.chain(default_hparams.items(), hparams.items())) @@ -167,7 +133,7 @@ class VanillaVAEVideoPredictionModel(BaseVideoPredictionModel): @staticmethod - def vae_arc3(x, l_name=0): + def vae_arc3(x,l_name=0,nz=16): seq_name = "sq_" + str(l_name) + "_" print("DBBUG: INPUT", x) conv1 = ld.conv_layer(x, 3, 2, 8, seq_name + "encode_1") @@ -184,8 +150,8 @@ class VanillaVAEVideoPredictionModel(BaseVideoPredictionModel): conv3_shape = conv3.get_shape().as_list() print("conv4_shape",conv3_shape) # Todo: to conv3 to - z_mu = ld.fc_layer(conv4, hiddens = 16, idx = seq_name + "enc_fc4_m") - z_log_sigma_sq = ld.fc_layer(conv4, hiddens = 16, idx = seq_name + "enc_fc4_m"'enc_fc4_sigma') + z_mu = ld.fc_layer(conv4, hiddens = nz, idx = seq_name + "enc_fc4_m") + z_log_sigma_sq = ld.fc_layer(conv4, hiddens = nz, idx = seq_name + "enc_fc4_m"'enc_fc4_sigma') eps = tf.random_normal(shape = tf.shape(z_log_sigma_sq), mean = 0, stddev = 1, dtype = tf.float32) z = z_mu + tf.sqrt(tf.exp(z_log_sigma_sq)) * eps print("latend variables z ", z) @@ -210,7 +176,7 @@ class VanillaVAEVideoPredictionModel(BaseVideoPredictionModel): z_log_sigma_sq_all = [] z_mu_all = [] for i in range(20): - q, z_mu, z_log_sigma_sq, z = VanillaVAEVideoPredictionModel.vae_arc3(self.x[:, i, :, :, :], l_name = i) + q, z_mu, z_log_sigma_sq, z = VanillaVAEVideoPredictionModel.vae_arc3(self.x[:, i, :, :, :], l_name=i, nz=self.nz) X.append(q) z_log_sigma_sq_all.append(z_log_sigma_sq) z_mu_all.append(z_mu)