diff --git a/Zam347_scripts/DataPreprocess.sh b/Zam347_scripts/DataPreprocess.sh
index 69c93115ab6af16c2a3bdd4060322c0785d3fdc4..764b949433702053b0889671ebc36880f01c690b 100755
--- a/Zam347_scripts/DataPreprocess.sh
+++ b/Zam347_scripts/DataPreprocess.sh
@@ -2,7 +2,7 @@
 
 
 source_dir=/home/$USER/extractedData
-destination_dir=/home/$USER/preprocessedData/era5-Y2015toY2017M01to12-64x64-74d00N71d00E-T_MSL_gph500/hickle
+destination_dir=/home/$USER/preprocessedData/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/hickle
 declare -a years=("2017")
 
 for year in "${years[@]}";
@@ -11,7 +11,7 @@ for year in "${years[@]}";
         echo "source_dir ${source_dir}/${year}"
         mpirun -np 2 python ../../workflow_parallel_frame_prediction/DataPreprocess/mpi_stager_v2_process_netCDF.py \
          --source_dir ${source_dir}/${year}/ \
-         --destination_dir ${destination_dir}/${year}/ --vars T2 MSL gph500 --lat_s 138 --lat_e 202 --lon_s 646 --lon_e 710
+         --destination_dir ${destination_dir}/${year}/ --vars T2 MSL gph500 --lat_s 74 --lat_e 202 --lon_s 550 --lon_e 710
     done
 python ../../workflow_parallel_frame_prediction/DataPreprocess/mpi_split_data_multi_years.py --destination_dir ${destination_dir}
 
diff --git a/Zam347_scripts/DataPreprocess_to_tf.sh b/Zam347_scripts/DataPreprocess_to_tf.sh
index 0c41cf6cad72c1f758c3d977440f6591b63fde35..608f95348b25c2169ae2963821639de8947c322b 100755
--- a/Zam347_scripts/DataPreprocess_to_tf.sh
+++ b/Zam347_scripts/DataPreprocess_to_tf.sh
@@ -1,4 +1,4 @@
 #!/bin/bash -x
 
 
-python ../video_prediction/datasets/era5_dataset_v2.py /home/${USER}/preprocessedData/era5-Y2015toY2017M01to12-64x64-74d00N71d00E-T_MSL_gph500/hickle/splits/ /home/${USER}/preprocessedData/era5-Y2015toY2017M01to12-64x64-74d00N71d00E-T_MSL_gph500/tfrecords/ -vars T2 MSL gph500 -height 64 -width 64 -seq_length 20 
+python ../video_prediction/datasets/era5_dataset_v2.py /home/${USER}/preprocessedData/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/hickle/splits/ /home/${USER}/preprocessedData/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/tfrecords/ -vars T2 MSL gph500 -height 128 -width 160 -seq_length 20 
diff --git a/Zam347_scripts/generate_era5-out.out b/Zam347_scripts/generate_era5-out.out
index e8924e4f78a5fa943026cda0b4322ef58c8fab16..76b965d5fb62cd8e8c51731f8110c2b79ec1d25b 100644
--- a/Zam347_scripts/generate_era5-out.out
+++ b/Zam347_scripts/generate_era5-out.out
@@ -1,30 +1,594 @@
-temporal_dir: /home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-64x64-74d00N71d00E-T_MSL_gph500/hickle/splits/
-loading options from checkpoint /home/b.gong/models/era5-Y2015toY2017M01to12-64x64-74d00N71d00E-T_MSL_gph500/vae
+temporal_dir: /home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/hickle/splits/
+loading options from checkpoint /home/b.gong/models/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/vae
 ----------------------------------- Options ------------------------------------
 batch_size = 2
-checkpoint = /home/b.gong/models/era5-Y2015toY2017M01to12-64x64-74d00N71d00E-T_MSL_gph500/vae
+checkpoint = /home/b.gong/models/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/vae
 dataset = era5
 dataset_hparams = sequence_length=20
 fps = 4
 gif_length = None
 gpu_mem_frac = 0
-input_dir = /home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-64x64-74d00N71d00E-T_MSL_gph500/tfrecords
+input_dir = /home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/tfrecords
 mode = test
 model = vae
 model_hparams = None
 num_epochs = 1
 num_samples = None
 num_stochastic_samples = 1
-output_gif_dir = /home/b.gong/results/era5-Y2015toY2017M01to12-64x64-74d00N71d00E-T_MSL_gph500/vae
-output_png_dir = /home/b.gong/results/era5-Y2015toY2017M01to12-64x64-74d00N71d00E-T_MSL_gph500/vae
-results_dir = /home/b.gong/results/era5-Y2015toY2017M01to12-64x64-74d00N71d00E-T_MSL_gph500
-results_gif_dir = /home/b.gong/results/era5-Y2015toY2017M01to12-64x64-74d00N71d00E-T_MSL_gph500
-results_png_dir = /home/b.gong/results/era5-Y2015toY2017M01to12-64x64-74d00N71d00E-T_MSL_gph500
+output_gif_dir = /home/b.gong/results/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/vae
+output_png_dir = /home/b.gong/results/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/vae
+results_dir = /home/b.gong/results/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500
+results_gif_dir = /home/b.gong/results/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500
+results_png_dir = /home/b.gong/results/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500
 seed = 7
 ------------------------------------- End --------------------------------------
 datset_class ERA5Dataset_v2
-FILENAMES ['/home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-64x64-74d00N71d00E-T_MSL_gph500/tfrecords/test/sequence_0_to_1.tfrecords', '/home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-64x64-74d00N71d00E-T_MSL_gph500/tfrecords/test/sequence_10_to_11.tfrecords', '/home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-64x64-74d00N71d00E-T_MSL_gph500/tfrecords/test/sequence_12_to_13.tfrecords', '/home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-64x64-74d00N71d00E-T_MSL_gph500/tfrecords/test/sequence_2_to_3.tfrecords', '/home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-64x64-74d00N71d00E-T_MSL_gph500/tfrecords/test/sequence_4_to_5.tfrecords', '/home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-64x64-74d00N71d00E-T_MSL_gph500/tfrecords/test/sequence_6_to_7.tfrecords', '/home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-64x64-74d00N71d00E-T_MSL_gph500/tfrecords/test/sequence_8_to_9.tfrecords']
-files ['/home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-64x64-74d00N71d00E-T_MSL_gph500/tfrecords/test/sequence_0_to_1.tfrecords', '/home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-64x64-74d00N71d00E-T_MSL_gph500/tfrecords/test/sequence_10_to_11.tfrecords', '/home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-64x64-74d00N71d00E-T_MSL_gph500/tfrecords/test/sequence_12_to_13.tfrecords', '/home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-64x64-74d00N71d00E-T_MSL_gph500/tfrecords/test/sequence_2_to_3.tfrecords', '/home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-64x64-74d00N71d00E-T_MSL_gph500/tfrecords/test/sequence_4_to_5.tfrecords', '/home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-64x64-74d00N71d00E-T_MSL_gph500/tfrecords/test/sequence_6_to_7.tfrecords', '/home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-64x64-74d00N71d00E-T_MSL_gph500/tfrecords/test/sequence_8_to_9.tfrecords']
+FILENAMES ['/home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/tfrecords/test/sequence_0_to_1.tfrecords', '/home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/tfrecords/test/sequence_10_to_11.tfrecords', '/home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/tfrecords/test/sequence_12_to_13.tfrecords', '/home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/tfrecords/test/sequence_2_to_3.tfrecords', '/home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/tfrecords/test/sequence_4_to_5.tfrecords', '/home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/tfrecords/test/sequence_6_to_7.tfrecords', '/home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/tfrecords/test/sequence_8_to_9.tfrecords']
+files ['/home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/tfrecords/test/sequence_0_to_1.tfrecords', '/home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/tfrecords/test/sequence_10_to_11.tfrecords', '/home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/tfrecords/test/sequence_12_to_13.tfrecords', '/home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/tfrecords/test/sequence_2_to_3.tfrecords', '/home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/tfrecords/test/sequence_4_to_5.tfrecords', '/home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/tfrecords/test/sequence_6_to_7.tfrecords', '/home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/tfrecords/test/sequence_8_to_9.tfrecords']
 mode test
-Parse features {'images/encoded': <tensorflow.python.framework.sparse_tensor.SparseTensor object at 0x7f71880c6b00>, 'channels': <tf.Tensor 'ParseSingleExample/ParseSingleExample:3' shape=() dtype=int64>, 'height': <tf.Tensor 'ParseSingleExample/ParseSingleExample:4' shape=() dtype=int64>, 'sequence_length': <tf.Tensor 'ParseSingleExample/ParseSingleExample:5' shape=() dtype=int64>, 'width': <tf.Tensor 'ParseSingleExample/ParseSingleExample:6' shape=() dtype=int64>}
-Image shape 20, 64,64,3
+Parse features {'images/encoded': <tensorflow.python.framework.sparse_tensor.SparseTensor object at 0x7f4f87630b70>, 'channels': <tf.Tensor 'ParseSingleExample/ParseSingleExample:3' shape=() dtype=int64>, 'height': <tf.Tensor 'ParseSingleExample/ParseSingleExample:4' shape=() dtype=int64>, 'sequence_length': <tf.Tensor 'ParseSingleExample/ParseSingleExample:5' shape=() dtype=int64>, 'width': <tf.Tensor 'ParseSingleExample/ParseSingleExample:6' shape=() dtype=int64>}
+Image shape 20, 128,160,3
+DBBUG: INPUT Tensor("strided_slice:0", shape=(2, 128, 160, 3), dtype=float32)
+conv_layer activation function relu
+DEBUG input shape (2, 128, 160, 3)
+Encode_1_shape (2, 64, 80, 8)
+conv_layer activation function relu
+DEBUG input shape (2, 64, 80, 8)
+Encode 2_shape, (2, 64, 80, 8)
+conv_layer activation function relu
+DEBUG input shape (2, 64, 80, 8)
+Encode 3_shape,  (2, 32, 40, 8)
+Encode 4_shape,  (2, 10240)
+conv4_shape [2, 32, 40, 8]
+latend variables z  Tensor("add:0", shape=(2, 16), dtype=float32)
+latend variables z2  Tensor("sq_0_deenc_fc1_fc/Relu:0", shape=(2, 10240), dtype=float32)
+latend variables z3  Tensor("Reshape:0", shape=(2, 32, 40, 8), dtype=float32)
+input_channel 8
+output_shape Tensor("sq_0_decode_5_trans_conv/stack:0", shape=(4,), dtype=int32)
+Decode 5 shape (2, 64, 80, 8)
+input_channel 8
+output_shape Tensor("sq_0_decode_6_trans_conv/stack:0", shape=(4,), dtype=int32)
+input_channel 8
+output_shape Tensor("sq_0_decode_8_trans_conv/stack:0", shape=(4,), dtype=int32)
+X_hat (2, 128, 160, 3)
+DBBUG: INPUT Tensor("strided_slice_1:0", shape=(2, 128, 160, 3), dtype=float32)
+conv_layer activation function relu
+DEBUG input shape (2, 128, 160, 3)
+Encode_1_shape (2, 64, 80, 8)
+conv_layer activation function relu
+DEBUG input shape (2, 64, 80, 8)
+Encode 2_shape, (2, 64, 80, 8)
+conv_layer activation function relu
+DEBUG input shape (2, 64, 80, 8)
+Encode 3_shape,  (2, 32, 40, 8)
+Encode 4_shape,  (2, 10240)
+conv4_shape [2, 32, 40, 8]
+latend variables z  Tensor("add_1:0", shape=(2, 16), dtype=float32)
+latend variables z2  Tensor("sq_1_deenc_fc1_fc/Relu:0", shape=(2, 10240), dtype=float32)
+latend variables z3  Tensor("Reshape_1:0", shape=(2, 32, 40, 8), dtype=float32)
+input_channel 8
+output_shape Tensor("sq_1_decode_5_trans_conv/stack:0", shape=(4,), dtype=int32)
+Decode 5 shape (2, 64, 80, 8)
+input_channel 8
+output_shape Tensor("sq_1_decode_6_trans_conv/stack:0", shape=(4,), dtype=int32)
+input_channel 8
+output_shape Tensor("sq_1_decode_8_trans_conv/stack:0", shape=(4,), dtype=int32)
+X_hat (2, 128, 160, 3)
+DBBUG: INPUT Tensor("strided_slice_2:0", shape=(2, 128, 160, 3), dtype=float32)
+conv_layer activation function relu
+DEBUG input shape (2, 128, 160, 3)
+Encode_1_shape (2, 64, 80, 8)
+conv_layer activation function relu
+DEBUG input shape (2, 64, 80, 8)
+Encode 2_shape, (2, 64, 80, 8)
+conv_layer activation function relu
+DEBUG input shape (2, 64, 80, 8)
+Encode 3_shape,  (2, 32, 40, 8)
+Encode 4_shape,  (2, 10240)
+conv4_shape [2, 32, 40, 8]
+latend variables z  Tensor("add_2:0", shape=(2, 16), dtype=float32)
+latend variables z2  Tensor("sq_2_deenc_fc1_fc/Relu:0", shape=(2, 10240), dtype=float32)
+latend variables z3  Tensor("Reshape_2:0", shape=(2, 32, 40, 8), dtype=float32)
+input_channel 8
+output_shape Tensor("sq_2_decode_5_trans_conv/stack:0", shape=(4,), dtype=int32)
+Decode 5 shape (2, 64, 80, 8)
+input_channel 8
+output_shape Tensor("sq_2_decode_6_trans_conv/stack:0", shape=(4,), dtype=int32)
+input_channel 8
+output_shape Tensor("sq_2_decode_8_trans_conv/stack:0", shape=(4,), dtype=int32)
+X_hat (2, 128, 160, 3)
+DBBUG: INPUT Tensor("strided_slice_3:0", shape=(2, 128, 160, 3), dtype=float32)
+conv_layer activation function relu
+DEBUG input shape (2, 128, 160, 3)
+Encode_1_shape (2, 64, 80, 8)
+conv_layer activation function relu
+DEBUG input shape (2, 64, 80, 8)
+Encode 2_shape, (2, 64, 80, 8)
+conv_layer activation function relu
+DEBUG input shape (2, 64, 80, 8)
+Encode 3_shape,  (2, 32, 40, 8)
+Encode 4_shape,  (2, 10240)
+conv4_shape [2, 32, 40, 8]
+latend variables z  Tensor("add_3:0", shape=(2, 16), dtype=float32)
+latend variables z2  Tensor("sq_3_deenc_fc1_fc/Relu:0", shape=(2, 10240), dtype=float32)
+latend variables z3  Tensor("Reshape_3:0", shape=(2, 32, 40, 8), dtype=float32)
+input_channel 8
+output_shape Tensor("sq_3_decode_5_trans_conv/stack:0", shape=(4,), dtype=int32)
+Decode 5 shape (2, 64, 80, 8)
+input_channel 8
+output_shape Tensor("sq_3_decode_6_trans_conv/stack:0", shape=(4,), dtype=int32)
+input_channel 8
+output_shape Tensor("sq_3_decode_8_trans_conv/stack:0", shape=(4,), dtype=int32)
+X_hat (2, 128, 160, 3)
+DBBUG: INPUT Tensor("strided_slice_4:0", shape=(2, 128, 160, 3), dtype=float32)
+conv_layer activation function relu
+DEBUG input shape (2, 128, 160, 3)
+Encode_1_shape (2, 64, 80, 8)
+conv_layer activation function relu
+DEBUG input shape (2, 64, 80, 8)
+Encode 2_shape, (2, 64, 80, 8)
+conv_layer activation function relu
+DEBUG input shape (2, 64, 80, 8)
+Encode 3_shape,  (2, 32, 40, 8)
+Encode 4_shape,  (2, 10240)
+conv4_shape [2, 32, 40, 8]
+latend variables z  Tensor("add_4:0", shape=(2, 16), dtype=float32)
+latend variables z2  Tensor("sq_4_deenc_fc1_fc/Relu:0", shape=(2, 10240), dtype=float32)
+latend variables z3  Tensor("Reshape_4:0", shape=(2, 32, 40, 8), dtype=float32)
+input_channel 8
+output_shape Tensor("sq_4_decode_5_trans_conv/stack:0", shape=(4,), dtype=int32)
+Decode 5 shape (2, 64, 80, 8)
+input_channel 8
+output_shape Tensor("sq_4_decode_6_trans_conv/stack:0", shape=(4,), dtype=int32)
+input_channel 8
+output_shape Tensor("sq_4_decode_8_trans_conv/stack:0", shape=(4,), dtype=int32)
+X_hat (2, 128, 160, 3)
+DBBUG: INPUT Tensor("strided_slice_5:0", shape=(2, 128, 160, 3), dtype=float32)
+conv_layer activation function relu
+DEBUG input shape (2, 128, 160, 3)
+Encode_1_shape (2, 64, 80, 8)
+conv_layer activation function relu
+DEBUG input shape (2, 64, 80, 8)
+Encode 2_shape, (2, 64, 80, 8)
+conv_layer activation function relu
+DEBUG input shape (2, 64, 80, 8)
+Encode 3_shape,  (2, 32, 40, 8)
+Encode 4_shape,  (2, 10240)
+conv4_shape [2, 32, 40, 8]
+latend variables z  Tensor("add_5:0", shape=(2, 16), dtype=float32)
+latend variables z2  Tensor("sq_5_deenc_fc1_fc/Relu:0", shape=(2, 10240), dtype=float32)
+latend variables z3  Tensor("Reshape_5:0", shape=(2, 32, 40, 8), dtype=float32)
+input_channel 8
+output_shape Tensor("sq_5_decode_5_trans_conv/stack:0", shape=(4,), dtype=int32)
+Decode 5 shape (2, 64, 80, 8)
+input_channel 8
+output_shape Tensor("sq_5_decode_6_trans_conv/stack:0", shape=(4,), dtype=int32)
+input_channel 8
+output_shape Tensor("sq_5_decode_8_trans_conv/stack:0", shape=(4,), dtype=int32)
+X_hat (2, 128, 160, 3)
+DBBUG: INPUT Tensor("strided_slice_6:0", shape=(2, 128, 160, 3), dtype=float32)
+conv_layer activation function relu
+DEBUG input shape (2, 128, 160, 3)
+Encode_1_shape (2, 64, 80, 8)
+conv_layer activation function relu
+DEBUG input shape (2, 64, 80, 8)
+Encode 2_shape, (2, 64, 80, 8)
+conv_layer activation function relu
+DEBUG input shape (2, 64, 80, 8)
+Encode 3_shape,  (2, 32, 40, 8)
+Encode 4_shape,  (2, 10240)
+conv4_shape [2, 32, 40, 8]
+latend variables z  Tensor("add_6:0", shape=(2, 16), dtype=float32)
+latend variables z2  Tensor("sq_6_deenc_fc1_fc/Relu:0", shape=(2, 10240), dtype=float32)
+latend variables z3  Tensor("Reshape_6:0", shape=(2, 32, 40, 8), dtype=float32)
+input_channel 8
+output_shape Tensor("sq_6_decode_5_trans_conv/stack:0", shape=(4,), dtype=int32)
+Decode 5 shape (2, 64, 80, 8)
+input_channel 8
+output_shape Tensor("sq_6_decode_6_trans_conv/stack:0", shape=(4,), dtype=int32)
+input_channel 8
+output_shape Tensor("sq_6_decode_8_trans_conv/stack:0", shape=(4,), dtype=int32)
+X_hat (2, 128, 160, 3)
+DBBUG: INPUT Tensor("strided_slice_7:0", shape=(2, 128, 160, 3), dtype=float32)
+conv_layer activation function relu
+DEBUG input shape (2, 128, 160, 3)
+Encode_1_shape (2, 64, 80, 8)
+conv_layer activation function relu
+DEBUG input shape (2, 64, 80, 8)
+Encode 2_shape, (2, 64, 80, 8)
+conv_layer activation function relu
+DEBUG input shape (2, 64, 80, 8)
+Encode 3_shape,  (2, 32, 40, 8)
+Encode 4_shape,  (2, 10240)
+conv4_shape [2, 32, 40, 8]
+latend variables z  Tensor("add_7:0", shape=(2, 16), dtype=float32)
+latend variables z2  Tensor("sq_7_deenc_fc1_fc/Relu:0", shape=(2, 10240), dtype=float32)
+latend variables z3  Tensor("Reshape_7:0", shape=(2, 32, 40, 8), dtype=float32)
+input_channel 8
+output_shape Tensor("sq_7_decode_5_trans_conv/stack:0", shape=(4,), dtype=int32)
+Decode 5 shape (2, 64, 80, 8)
+input_channel 8
+output_shape Tensor("sq_7_decode_6_trans_conv/stack:0", shape=(4,), dtype=int32)
+input_channel 8
+output_shape Tensor("sq_7_decode_8_trans_conv/stack:0", shape=(4,), dtype=int32)
+X_hat (2, 128, 160, 3)
+DBBUG: INPUT Tensor("strided_slice_8:0", shape=(2, 128, 160, 3), dtype=float32)
+conv_layer activation function relu
+DEBUG input shape (2, 128, 160, 3)
+Encode_1_shape (2, 64, 80, 8)
+conv_layer activation function relu
+DEBUG input shape (2, 64, 80, 8)
+Encode 2_shape, (2, 64, 80, 8)
+conv_layer activation function relu
+DEBUG input shape (2, 64, 80, 8)
+Encode 3_shape,  (2, 32, 40, 8)
+Encode 4_shape,  (2, 10240)
+conv4_shape [2, 32, 40, 8]
+latend variables z  Tensor("add_8:0", shape=(2, 16), dtype=float32)
+latend variables z2  Tensor("sq_8_deenc_fc1_fc/Relu:0", shape=(2, 10240), dtype=float32)
+latend variables z3  Tensor("Reshape_8:0", shape=(2, 32, 40, 8), dtype=float32)
+input_channel 8
+output_shape Tensor("sq_8_decode_5_trans_conv/stack:0", shape=(4,), dtype=int32)
+Decode 5 shape (2, 64, 80, 8)
+input_channel 8
+output_shape Tensor("sq_8_decode_6_trans_conv/stack:0", shape=(4,), dtype=int32)
+input_channel 8
+output_shape Tensor("sq_8_decode_8_trans_conv/stack:0", shape=(4,), dtype=int32)
+X_hat (2, 128, 160, 3)
+DBBUG: INPUT Tensor("strided_slice_9:0", shape=(2, 128, 160, 3), dtype=float32)
+conv_layer activation function relu
+DEBUG input shape (2, 128, 160, 3)
+Encode_1_shape (2, 64, 80, 8)
+conv_layer activation function relu
+DEBUG input shape (2, 64, 80, 8)
+Encode 2_shape, (2, 64, 80, 8)
+conv_layer activation function relu
+DEBUG input shape (2, 64, 80, 8)
+Encode 3_shape,  (2, 32, 40, 8)
+Encode 4_shape,  (2, 10240)
+conv4_shape [2, 32, 40, 8]
+latend variables z  Tensor("add_9:0", shape=(2, 16), dtype=float32)
+latend variables z2  Tensor("sq_9_deenc_fc1_fc/Relu:0", shape=(2, 10240), dtype=float32)
+latend variables z3  Tensor("Reshape_9:0", shape=(2, 32, 40, 8), dtype=float32)
+input_channel 8
+output_shape Tensor("sq_9_decode_5_trans_conv/stack:0", shape=(4,), dtype=int32)
+Decode 5 shape (2, 64, 80, 8)
+input_channel 8
+output_shape Tensor("sq_9_decode_6_trans_conv/stack:0", shape=(4,), dtype=int32)
+input_channel 8
+output_shape Tensor("sq_9_decode_8_trans_conv/stack:0", shape=(4,), dtype=int32)
+X_hat (2, 128, 160, 3)
+DBBUG: INPUT Tensor("strided_slice_10:0", shape=(2, 128, 160, 3), dtype=float32)
+conv_layer activation function relu
+DEBUG input shape (2, 128, 160, 3)
+Encode_1_shape (2, 64, 80, 8)
+conv_layer activation function relu
+DEBUG input shape (2, 64, 80, 8)
+Encode 2_shape, (2, 64, 80, 8)
+conv_layer activation function relu
+DEBUG input shape (2, 64, 80, 8)
+Encode 3_shape,  (2, 32, 40, 8)
+Encode 4_shape,  (2, 10240)
+conv4_shape [2, 32, 40, 8]
+latend variables z  Tensor("add_10:0", shape=(2, 16), dtype=float32)
+latend variables z2  Tensor("sq_10_deenc_fc1_fc/Relu:0", shape=(2, 10240), dtype=float32)
+latend variables z3  Tensor("Reshape_10:0", shape=(2, 32, 40, 8), dtype=float32)
+input_channel 8
+output_shape Tensor("sq_10_decode_5_trans_conv/stack:0", shape=(4,), dtype=int32)
+Decode 5 shape (2, 64, 80, 8)
+input_channel 8
+output_shape Tensor("sq_10_decode_6_trans_conv/stack:0", shape=(4,), dtype=int32)
+input_channel 8
+output_shape Tensor("sq_10_decode_8_trans_conv/stack:0", shape=(4,), dtype=int32)
+X_hat (2, 128, 160, 3)
+DBBUG: INPUT Tensor("strided_slice_11:0", shape=(2, 128, 160, 3), dtype=float32)
+conv_layer activation function relu
+DEBUG input shape (2, 128, 160, 3)
+Encode_1_shape (2, 64, 80, 8)
+conv_layer activation function relu
+DEBUG input shape (2, 64, 80, 8)
+Encode 2_shape, (2, 64, 80, 8)
+conv_layer activation function relu
+DEBUG input shape (2, 64, 80, 8)
+Encode 3_shape,  (2, 32, 40, 8)
+Encode 4_shape,  (2, 10240)
+conv4_shape [2, 32, 40, 8]
+latend variables z  Tensor("add_11:0", shape=(2, 16), dtype=float32)
+latend variables z2  Tensor("sq_11_deenc_fc1_fc/Relu:0", shape=(2, 10240), dtype=float32)
+latend variables z3  Tensor("Reshape_11:0", shape=(2, 32, 40, 8), dtype=float32)
+input_channel 8
+output_shape Tensor("sq_11_decode_5_trans_conv/stack:0", shape=(4,), dtype=int32)
+Decode 5 shape (2, 64, 80, 8)
+input_channel 8
+output_shape Tensor("sq_11_decode_6_trans_conv/stack:0", shape=(4,), dtype=int32)
+input_channel 8
+output_shape Tensor("sq_11_decode_8_trans_conv/stack:0", shape=(4,), dtype=int32)
+X_hat (2, 128, 160, 3)
+DBBUG: INPUT Tensor("strided_slice_12:0", shape=(2, 128, 160, 3), dtype=float32)
+conv_layer activation function relu
+DEBUG input shape (2, 128, 160, 3)
+Encode_1_shape (2, 64, 80, 8)
+conv_layer activation function relu
+DEBUG input shape (2, 64, 80, 8)
+Encode 2_shape, (2, 64, 80, 8)
+conv_layer activation function relu
+DEBUG input shape (2, 64, 80, 8)
+Encode 3_shape,  (2, 32, 40, 8)
+Encode 4_shape,  (2, 10240)
+conv4_shape [2, 32, 40, 8]
+latend variables z  Tensor("add_12:0", shape=(2, 16), dtype=float32)
+latend variables z2  Tensor("sq_12_deenc_fc1_fc/Relu:0", shape=(2, 10240), dtype=float32)
+latend variables z3  Tensor("Reshape_12:0", shape=(2, 32, 40, 8), dtype=float32)
+input_channel 8
+output_shape Tensor("sq_12_decode_5_trans_conv/stack:0", shape=(4,), dtype=int32)
+Decode 5 shape (2, 64, 80, 8)
+input_channel 8
+output_shape Tensor("sq_12_decode_6_trans_conv/stack:0", shape=(4,), dtype=int32)
+input_channel 8
+output_shape Tensor("sq_12_decode_8_trans_conv/stack:0", shape=(4,), dtype=int32)
+X_hat (2, 128, 160, 3)
+DBBUG: INPUT Tensor("strided_slice_13:0", shape=(2, 128, 160, 3), dtype=float32)
+conv_layer activation function relu
+DEBUG input shape (2, 128, 160, 3)
+Encode_1_shape (2, 64, 80, 8)
+conv_layer activation function relu
+DEBUG input shape (2, 64, 80, 8)
+Encode 2_shape, (2, 64, 80, 8)
+conv_layer activation function relu
+DEBUG input shape (2, 64, 80, 8)
+Encode 3_shape,  (2, 32, 40, 8)
+Encode 4_shape,  (2, 10240)
+conv4_shape [2, 32, 40, 8]
+latend variables z  Tensor("add_13:0", shape=(2, 16), dtype=float32)
+latend variables z2  Tensor("sq_13_deenc_fc1_fc/Relu:0", shape=(2, 10240), dtype=float32)
+latend variables z3  Tensor("Reshape_13:0", shape=(2, 32, 40, 8), dtype=float32)
+input_channel 8
+output_shape Tensor("sq_13_decode_5_trans_conv/stack:0", shape=(4,), dtype=int32)
+Decode 5 shape (2, 64, 80, 8)
+input_channel 8
+output_shape Tensor("sq_13_decode_6_trans_conv/stack:0", shape=(4,), dtype=int32)
+input_channel 8
+output_shape Tensor("sq_13_decode_8_trans_conv/stack:0", shape=(4,), dtype=int32)
+X_hat (2, 128, 160, 3)
+DBBUG: INPUT Tensor("strided_slice_14:0", shape=(2, 128, 160, 3), dtype=float32)
+conv_layer activation function relu
+DEBUG input shape (2, 128, 160, 3)
+Encode_1_shape (2, 64, 80, 8)
+conv_layer activation function relu
+DEBUG input shape (2, 64, 80, 8)
+Encode 2_shape, (2, 64, 80, 8)
+conv_layer activation function relu
+DEBUG input shape (2, 64, 80, 8)
+Encode 3_shape,  (2, 32, 40, 8)
+Encode 4_shape,  (2, 10240)
+conv4_shape [2, 32, 40, 8]
+latend variables z  Tensor("add_14:0", shape=(2, 16), dtype=float32)
+latend variables z2  Tensor("sq_14_deenc_fc1_fc/Relu:0", shape=(2, 10240), dtype=float32)
+latend variables z3  Tensor("Reshape_14:0", shape=(2, 32, 40, 8), dtype=float32)
+input_channel 8
+output_shape Tensor("sq_14_decode_5_trans_conv/stack:0", shape=(4,), dtype=int32)
+Decode 5 shape (2, 64, 80, 8)
+input_channel 8
+output_shape Tensor("sq_14_decode_6_trans_conv/stack:0", shape=(4,), dtype=int32)
+input_channel 8
+output_shape Tensor("sq_14_decode_8_trans_conv/stack:0", shape=(4,), dtype=int32)
+X_hat (2, 128, 160, 3)
+DBBUG: INPUT Tensor("strided_slice_15:0", shape=(2, 128, 160, 3), dtype=float32)
+conv_layer activation function relu
+DEBUG input shape (2, 128, 160, 3)
+Encode_1_shape (2, 64, 80, 8)
+conv_layer activation function relu
+DEBUG input shape (2, 64, 80, 8)
+Encode 2_shape, (2, 64, 80, 8)
+conv_layer activation function relu
+DEBUG input shape (2, 64, 80, 8)
+Encode 3_shape,  (2, 32, 40, 8)
+Encode 4_shape,  (2, 10240)
+conv4_shape [2, 32, 40, 8]
+latend variables z  Tensor("add_15:0", shape=(2, 16), dtype=float32)
+latend variables z2  Tensor("sq_15_deenc_fc1_fc/Relu:0", shape=(2, 10240), dtype=float32)
+latend variables z3  Tensor("Reshape_15:0", shape=(2, 32, 40, 8), dtype=float32)
+input_channel 8
+output_shape Tensor("sq_15_decode_5_trans_conv/stack:0", shape=(4,), dtype=int32)
+Decode 5 shape (2, 64, 80, 8)
+input_channel 8
+output_shape Tensor("sq_15_decode_6_trans_conv/stack:0", shape=(4,), dtype=int32)
+input_channel 8
+output_shape Tensor("sq_15_decode_8_trans_conv/stack:0", shape=(4,), dtype=int32)
+X_hat (2, 128, 160, 3)
+DBBUG: INPUT Tensor("strided_slice_16:0", shape=(2, 128, 160, 3), dtype=float32)
+conv_layer activation function relu
+DEBUG input shape (2, 128, 160, 3)
+Encode_1_shape (2, 64, 80, 8)
+conv_layer activation function relu
+DEBUG input shape (2, 64, 80, 8)
+Encode 2_shape, (2, 64, 80, 8)
+conv_layer activation function relu
+DEBUG input shape (2, 64, 80, 8)
+Encode 3_shape,  (2, 32, 40, 8)
+Encode 4_shape,  (2, 10240)
+conv4_shape [2, 32, 40, 8]
+latend variables z  Tensor("add_16:0", shape=(2, 16), dtype=float32)
+latend variables z2  Tensor("sq_16_deenc_fc1_fc/Relu:0", shape=(2, 10240), dtype=float32)
+latend variables z3  Tensor("Reshape_16:0", shape=(2, 32, 40, 8), dtype=float32)
+input_channel 8
+output_shape Tensor("sq_16_decode_5_trans_conv/stack:0", shape=(4,), dtype=int32)
+Decode 5 shape (2, 64, 80, 8)
+input_channel 8
+output_shape Tensor("sq_16_decode_6_trans_conv/stack:0", shape=(4,), dtype=int32)
+input_channel 8
+output_shape Tensor("sq_16_decode_8_trans_conv/stack:0", shape=(4,), dtype=int32)
+X_hat (2, 128, 160, 3)
+DBBUG: INPUT Tensor("strided_slice_17:0", shape=(2, 128, 160, 3), dtype=float32)
+conv_layer activation function relu
+DEBUG input shape (2, 128, 160, 3)
+Encode_1_shape (2, 64, 80, 8)
+conv_layer activation function relu
+DEBUG input shape (2, 64, 80, 8)
+Encode 2_shape, (2, 64, 80, 8)
+conv_layer activation function relu
+DEBUG input shape (2, 64, 80, 8)
+Encode 3_shape,  (2, 32, 40, 8)
+Encode 4_shape,  (2, 10240)
+conv4_shape [2, 32, 40, 8]
+latend variables z  Tensor("add_17:0", shape=(2, 16), dtype=float32)
+latend variables z2  Tensor("sq_17_deenc_fc1_fc/Relu:0", shape=(2, 10240), dtype=float32)
+latend variables z3  Tensor("Reshape_17:0", shape=(2, 32, 40, 8), dtype=float32)
+input_channel 8
+output_shape Tensor("sq_17_decode_5_trans_conv/stack:0", shape=(4,), dtype=int32)
+Decode 5 shape (2, 64, 80, 8)
+input_channel 8
+output_shape Tensor("sq_17_decode_6_trans_conv/stack:0", shape=(4,), dtype=int32)
+input_channel 8
+output_shape Tensor("sq_17_decode_8_trans_conv/stack:0", shape=(4,), dtype=int32)
+X_hat (2, 128, 160, 3)
+DBBUG: INPUT Tensor("strided_slice_18:0", shape=(2, 128, 160, 3), dtype=float32)
+conv_layer activation function relu
+DEBUG input shape (2, 128, 160, 3)
+Encode_1_shape (2, 64, 80, 8)
+conv_layer activation function relu
+DEBUG input shape (2, 64, 80, 8)
+Encode 2_shape, (2, 64, 80, 8)
+conv_layer activation function relu
+DEBUG input shape (2, 64, 80, 8)
+Encode 3_shape,  (2, 32, 40, 8)
+Encode 4_shape,  (2, 10240)
+conv4_shape [2, 32, 40, 8]
+latend variables z  Tensor("add_18:0", shape=(2, 16), dtype=float32)
+latend variables z2  Tensor("sq_18_deenc_fc1_fc/Relu:0", shape=(2, 10240), dtype=float32)
+latend variables z3  Tensor("Reshape_18:0", shape=(2, 32, 40, 8), dtype=float32)
+input_channel 8
+output_shape Tensor("sq_18_decode_5_trans_conv/stack:0", shape=(4,), dtype=int32)
+Decode 5 shape (2, 64, 80, 8)
+input_channel 8
+output_shape Tensor("sq_18_decode_6_trans_conv/stack:0", shape=(4,), dtype=int32)
+input_channel 8
+output_shape Tensor("sq_18_decode_8_trans_conv/stack:0", shape=(4,), dtype=int32)
+X_hat (2, 128, 160, 3)
+DBBUG: INPUT Tensor("strided_slice_19:0", shape=(2, 128, 160, 3), dtype=float32)
+conv_layer activation function relu
+DEBUG input shape (2, 128, 160, 3)
+Encode_1_shape (2, 64, 80, 8)
+conv_layer activation function relu
+DEBUG input shape (2, 64, 80, 8)
+Encode 2_shape, (2, 64, 80, 8)
+conv_layer activation function relu
+DEBUG input shape (2, 64, 80, 8)
+Encode 3_shape,  (2, 32, 40, 8)
+Encode 4_shape,  (2, 10240)
+conv4_shape [2, 32, 40, 8]
+latend variables z  Tensor("add_19:0", shape=(2, 16), dtype=float32)
+latend variables z2  Tensor("sq_19_deenc_fc1_fc/Relu:0", shape=(2, 10240), dtype=float32)
+latend variables z3  Tensor("Reshape_19:0", shape=(2, 32, 40, 8), dtype=float32)
+input_channel 8
+output_shape Tensor("sq_19_decode_5_trans_conv/stack:0", shape=(4,), dtype=int32)
+Decode 5 shape (2, 64, 80, 8)
+input_channel 8
+output_shape Tensor("sq_19_decode_6_trans_conv/stack:0", shape=(4,), dtype=int32)
+input_channel 8
+output_shape Tensor("sq_19_decode_8_trans_conv/stack:0", shape=(4,), dtype=int32)
+X_hat (2, 128, 160, 3)
+X_hat (2, 20, 128, 160, 3)
+zlog_sigma_sq_all (2, 20, 16)
+creating restore saver from checkpoint /home/b.gong/models/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/vae
+temporal_dir: /home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/hickle/splits/
+test temporal_pkl file looks like folowing [[cftime.DatetimeGregorian(2017-02-01 00:00:00)]
+ [cftime.DatetimeGregorian(2017-02-01 01:00:00)]
+ [cftime.DatetimeGregorian(2017-02-01 02:00:00)]
+ [cftime.DatetimeGregorian(2017-02-01 03:00:00)]
+ [cftime.DatetimeGregorian(2017-02-01 04:00:00)]
+ [cftime.DatetimeGregorian(2017-02-01 05:00:00)]
+ [cftime.DatetimeGregorian(2017-02-01 06:00:00)]
+ [cftime.DatetimeGregorian(2017-02-01 07:00:00)]
+ [cftime.DatetimeGregorian(2017-02-01 08:00:00)]
+ [cftime.DatetimeGregorian(2017-02-01 09:00:00)]
+ [cftime.DatetimeGregorian(2017-02-01 10:00:00)]
+ [cftime.DatetimeGregorian(2017-02-01 11:00:00)]
+ [cftime.DatetimeGregorian(2017-02-01 12:00:00)]
+ [cftime.DatetimeGregorian(2017-02-01 13:00:00)]
+ [cftime.DatetimeGregorian(2017-02-01 14:00:00)]
+ [cftime.DatetimeGregorian(2017-02-01 15:00:00)]
+ [cftime.DatetimeGregorian(2017-02-01 16:00:00)]
+ [cftime.DatetimeGregorian(2017-02-01 17:00:00)]
+ [cftime.DatetimeGregorian(2017-02-01 18:00:00)]
+ [cftime.DatetimeGregorian(2017-02-01 19:00:00)]
+ [cftime.DatetimeGregorian(2017-02-01 20:00:00)]
+ [cftime.DatetimeGregorian(2017-02-01 21:00:00)]
+ [cftime.DatetimeGregorian(2017-02-01 22:00:00)]
+ [cftime.DatetimeGregorian(2017-02-01 23:00:00)]
+ [cftime.DatetimeGregorian(2017-02-02 00:00:00)]
+ [cftime.DatetimeGregorian(2017-02-02 01:00:00)]
+ [cftime.DatetimeGregorian(2017-02-02 02:00:00)]
+ [cftime.DatetimeGregorian(2017-02-02 03:00:00)]
+ [cftime.DatetimeGregorian(2017-02-02 04:00:00)]
+ [cftime.DatetimeGregorian(2017-02-02 05:00:00)]
+ [cftime.DatetimeGregorian(2017-02-02 06:00:00)]
+ [cftime.DatetimeGregorian(2017-02-02 07:00:00)]
+ [cftime.DatetimeGregorian(2017-02-02 08:00:00)]
+ [cftime.DatetimeGregorian(2017-02-02 09:00:00)]]
+Sample id 0
+Sample id 2
+Sample id 4
+Sample id 6
+Sample id 8
+Sample id 10
+Sample id 12
+Sample id 14
+Sample id 16
+Sample id 18
+Sample id 20
+Sample id 22
+Sample id 24
+Sample id 26
+timestamp: <class 'numpy.ndarray'>
+persistent ts [cftime.DatetimeGregorian(2017-02-01 02:00:00)]
+persistent index in test set: 2
+persistent_X.shape (20, 128, 160, 3)
+name _Stochastic_id_0_Time_20170202-020000
+timestamp: <class 'numpy.ndarray'>
+persistent ts [cftime.DatetimeGregorian(2017-02-01 03:00:00)]
+persistent index in test set: 3
+persistent_X.shape (20, 128, 160, 3)
+name _Stochastic_id_0_Time_20170202-030000
+Save persistent all
+Save generate all
+Sample id 28
+timestamp: <class 'numpy.ndarray'>
+persistent ts [cftime.DatetimeGregorian(2017-02-01 04:00:00)]
+persistent index in test set: 4
+persistent_X.shape (20, 128, 160, 3)
+name _Stochastic_id_0_Time_20170202-040000
+timestamp: <class 'numpy.ndarray'>
+persistent ts [cftime.DatetimeGregorian(2017-02-01 05:00:00)]
+persistent index in test set: 5
+persistent_X.shape (20, 128, 160, 3)
+name _Stochastic_id_0_Time_20170202-050000
+Save persistent all
+Save generate all
+Sample id 30
+timestamp: <class 'numpy.ndarray'>
+persistent ts [cftime.DatetimeGregorian(2017-02-01 06:00:00)]
+persistent index in test set: 6
+persistent_X.shape (20, 128, 160, 3)
+name _Stochastic_id_0_Time_20170202-060000
+timestamp: <class 'numpy.ndarray'>
+persistent ts [cftime.DatetimeGregorian(2017-02-01 07:00:00)]
+persistent index in test set: 7
+persistent_X.shape (20, 128, 160, 3)
+name _Stochastic_id_0_Time_20170202-070000
+Save persistent all
+Save generate all
+Sample id 32
+timestamp: <class 'numpy.ndarray'>
+persistent ts [cftime.DatetimeGregorian(2017-02-01 08:00:00)]
+persistent index in test set: 8
+persistent_X.shape (20, 128, 160, 3)
+name _Stochastic_id_0_Time_20170202-080000
+timestamp: <class 'numpy.ndarray'>
+persistent ts [cftime.DatetimeGregorian(2017-02-01 09:00:00)]
+persistent index in test set: 9
+persistent_X.shape (20, 128, 160, 3)
+name _Stochastic_id_0_Time_20170202-090000
+Save persistent all
+Save generate all
+Sample id 34
diff --git a/Zam347_scripts/generate_era5.sh b/Zam347_scripts/generate_era5.sh
index 42c496bb89282348539ac8a27019d040505213fb..2d95bf49839c5b238321c9aec45d8cb606f97c34 100755
--- a/Zam347_scripts/generate_era5.sh
+++ b/Zam347_scripts/generate_era5.sh
@@ -2,9 +2,9 @@
 
 
 python -u ../scripts/generate_transfer_learning_finetune.py \
---input_dir /home/${USER}/preprocessedData/era5-Y2015toY2017M01to12-64x64-74d00N71d00E-T_MSL_gph500/tfrecords  \
---dataset_hparams sequence_length=20 --checkpoint  /home/${USER}/models/era5-Y2015toY2017M01to12-64x64-74d00N71d00E-T_MSL_gph500/vae \
---mode test --results_dir /home/${USER}/results/era5-Y2015toY2017M01to12-64x64-74d00N71d00E-T_MSL_gph500 \
+--input_dir /home/${USER}/preprocessedData/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/tfrecords  \
+--dataset_hparams sequence_length=20 --checkpoint  /home/${USER}/models/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/vae \
+--mode test --results_dir /home/${USER}/results/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500 \
 --batch_size 2 --dataset era5   > generate_era5-out.out
 
 #srun  python scripts/train.py --input_dir data/era5 --dataset era5  --model savp --model_hparams_dict hparams/kth/ours_savp/model_hparams.json --output_dir logs/era5/ours_savp
diff --git a/Zam347_scripts/train_vae.sh b/Zam347_scripts/train_vae.sh
index b507d5c6afd266bc0d4b8a7dcfdd5e34cea495ab..c09f0b7fd8874efde6b2e1ae45866cc098391c5a 100755
--- a/Zam347_scripts/train_vae.sh
+++ b/Zam347_scripts/train_vae.sh
@@ -2,5 +2,5 @@
 
 
 
-python ../scripts/train_dummy.py --input_dir  /home/${USER}/preprocessedData/era5-Y2015toY2017M01to12-64x64-74d00N71d00E-T_MSL_gph500/tfrecords --dataset era5  --model vae --model_hparams_dict ../hparams/kth/ours_savp/model_hparams.json --output_dir /home/${USER}/models/era5-Y2015toY2017M01to12-64x64-74d00N71d00E-T_MSL_gph500/vae 
+python ../scripts/train_dummy.py --input_dir  /home/${USER}/preprocessedData/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/tfrecords --dataset era5  --model vae --model_hparams_dict ../hparams/era5/vae/model_hparams.json --output_dir /home/${USER}/models/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/vae 
 #srun  python scripts/train.py --input_dir data/era5 --dataset era5  --model savp --model_hparams_dict hparams/kth/ours_savp/model_hparams.json --output_dir logs/era5/ours_savp
diff --git a/env_setup/create_env_zam347.sh b/env_setup/create_env_zam347.sh
index c2a7b4e2315514ec551f81063ac7f7087a360235..95da5f2a7ed86183916d58a3c266846e6f0ca42b 100755
--- a/env_setup/create_env_zam347.sh
+++ b/env_setup/create_env_zam347.sh
@@ -22,7 +22,7 @@ pip3 install  mpi4py
 pip3 install netCDF4
 pip3 install  numpy
 pip3 install h5py
-pip3 install tensorflow-gpu==1.14.0
+pip3 install tensorflow-gpu==1.13.1
 #Copy the hickle package from bing's account
 #cp  -r /p/project/deepacf/deeprain/bing/hickle ${WORKING_DIR}
 
diff --git a/hparams/era5/vae/model_hparams.json b/hparams/era5/vae/model_hparams.json
index be9e05e6bb2cee5870f090b3a05edbd401755af7..2e9406148e140054ced5e0c4311f3885aa47f728 100644
--- a/hparams/era5/vae/model_hparams.json
+++ b/hparams/era5/vae/model_hparams.json
@@ -1,7 +1,7 @@
 {
     "batch_size": 8,
     "lr": 0.0002,
-    "nz": 32,
+    "nz": 16,
     "max_steps":20
 }
 
diff --git a/video_prediction/models/vanilla_vae_model.py b/video_prediction/models/vanilla_vae_model.py
index c2e6d959964aad35db55d677bde87b98bfde5d11..7eec886c462cab73e3bf9ef5260fc29ea06ec34b 100644
--- a/video_prediction/models/vanilla_vae_model.py
+++ b/video_prediction/models/vanilla_vae_model.py
@@ -21,20 +21,11 @@ class VanillaVAEVideoPredictionModel(BaseVideoPredictionModel):
         super(VanillaVAEVideoPredictionModel, self).__init__(mode, hparams_dict, hparams, **kwargs)
         self.mode = mode
         self.learning_rate = self.hparams.lr
+        self.nz = self.hparams.nz
         self.aggregate_nccl=aggregate_nccl
         self.gen_images_enc = None
-        self.g_losses = None
-        self.d_losses = None
-        self.g_loss = None
-        self.d_loss = None
-        self.g_vars = None
-        self.d_vars = None
         self.train_op = None
         self.summary_op = None
-        self.image_summary_op = None
-        self.eval_summary_op = None
-        self.accum_eval_summary_op = None
-        self.accum_eval_metrics_reset_op = None
         self.recon_loss = None
         self.latent_loss = None
         self.total_loss = None
@@ -65,6 +56,7 @@ class VanillaVAEVideoPredictionModel(BaseVideoPredictionModel):
                 specified during instantiation.
         """
         default_hparams = super(VanillaVAEVideoPredictionModel, self).get_default_hparams_dict()
+        print ("default hparams",default_hparams)
         hparams = dict(
             batch_size=16,
             lr=0.001,
@@ -73,35 +65,9 @@ class VanillaVAEVideoPredictionModel(BaseVideoPredictionModel):
             lr_boundaries=(0,),
             max_steps=350000,
             nz=10,
-            beta1=0.9,
-            beta2=0.999,
             context_frames=-1,
             sequence_length=-1,
             clip_length=10, #Bing: TODO What is the clip_length, original is 10,
-            l1_weight=0.0,
-            l2_weight=1.0,
-            vgg_cdist_weight=0.0,
-            feature_l2_weight=0.0,
-            ae_l2_weight=0.0,
-            state_weight=0.0,
-            tv_weight=0.0,
-            image_sn_gan_weight=0.0,
-            image_sn_vae_gan_weight=0.0,
-            images_sn_gan_weight=0.0,
-            images_sn_vae_gan_weight=0.0,
-            video_sn_gan_weight=0.0,
-            video_sn_vae_gan_weight=0.0,
-            gan_feature_l2_weight=0.0,
-            gan_feature_cdist_weight=0.0,
-            vae_gan_feature_l2_weight=0.0,
-            vae_gan_feature_cdist_weight=0.0,
-            gan_loss_type='LSGAN',
-            joint_gan_optimization=False,
-            kl_weight=0.0,
-            kl_anneal='linear',
-            kl_anneal_k=-1.0,
-            kl_anneal_steps=(50000, 100000),
-            z_l1_weight=0.0,
         )
         return dict(itertools.chain(default_hparams.items(), hparams.items()))
 
@@ -167,7 +133,7 @@ class VanillaVAEVideoPredictionModel(BaseVideoPredictionModel):
 
 
     @staticmethod
-    def vae_arc3(x, l_name=0):
+    def vae_arc3(x,l_name=0,nz=16):
         seq_name = "sq_" + str(l_name) + "_"
         print("DBBUG: INPUT", x)
         conv1 = ld.conv_layer(x, 3, 2, 8, seq_name + "encode_1")
@@ -184,8 +150,8 @@ class VanillaVAEVideoPredictionModel(BaseVideoPredictionModel):
         conv3_shape = conv3.get_shape().as_list()
         print("conv4_shape",conv3_shape)
         # Todo: to conv3 to 
-        z_mu = ld.fc_layer(conv4, hiddens = 16, idx = seq_name + "enc_fc4_m")
-        z_log_sigma_sq = ld.fc_layer(conv4, hiddens = 16, idx = seq_name + "enc_fc4_m"'enc_fc4_sigma')
+        z_mu = ld.fc_layer(conv4, hiddens = nz, idx = seq_name + "enc_fc4_m")
+        z_log_sigma_sq = ld.fc_layer(conv4, hiddens = nz, idx = seq_name + "enc_fc4_m"'enc_fc4_sigma')
         eps = tf.random_normal(shape = tf.shape(z_log_sigma_sq), mean = 0, stddev = 1, dtype = tf.float32)
         z = z_mu + tf.sqrt(tf.exp(z_log_sigma_sq)) * eps
         print("latend variables z ", z)
@@ -210,7 +176,7 @@ class VanillaVAEVideoPredictionModel(BaseVideoPredictionModel):
         z_log_sigma_sq_all = []
         z_mu_all = []
         for i in range(20):
-            q, z_mu, z_log_sigma_sq, z = VanillaVAEVideoPredictionModel.vae_arc3(self.x[:, i, :, :, :], l_name = i)
+            q, z_mu, z_log_sigma_sq, z = VanillaVAEVideoPredictionModel.vae_arc3(self.x[:, i, :, :, :], l_name=i, nz=self.nz)
             X.append(q)
             z_log_sigma_sq_all.append(z_log_sigma_sq)
             z_mu_all.append(z_mu)