diff --git a/scripts/train_dummy.py b/scripts/train_dummy.py
index b89ca957aa4696f4ba6f4118a83bee10683c16ff..6ebdb70bf24ecc53fd9611a7af948842600cd0db 100644
--- a/scripts/train_dummy.py
+++ b/scripts/train_dummy.py
@@ -164,13 +164,13 @@ def main():
     gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=args.gpu_mem_frac, allow_growth=True)
     config = tf.ConfigProto(gpu_options=gpu_options, allow_soft_placement=True)
     #global_step = tf.train.get_or_create_global_step()
+    #global_step = tf.Variable(0, name = 'global_step', trainable = False)
     max_steps = model.hparams.max_steps
     print ("max_steps",max_steps)
     with tf.Session(config=config) as sess:
         print("parameter_count =", sess.run(parameter_count))
         sess.run(tf.global_variables_initializer())
         sess.run(tf.local_variables_initializer())
-       
         #coord = tf.train.Coordinator()
         #threads = tf.train.start_queue_runners(sess = sess, coord = coord)
         print("Init done: {sess.run(tf.local_variables_initializer())}%")
@@ -188,20 +188,23 @@ def main():
         # start at one step earlier to log everything without doing any training
         # step is relative to the start_step
         for step in range(-1, max_steps - start_step):
+            global_step = sess.run(model.global_step)
+            print ("global_step:", global_step)
             val_handle_eval = sess.run(val_handle)
             print ("val_handle_val",val_handle_eval)
             if step == 1:
                 # skip step -1 and 0 for timing purposes (for warmstarting)
                 start_time = time.time()
-
-            fetches = {"global_step": model.global_step}
+            
+            fetches = {"global_step":model.global_step}
             fetches["train_op"] = model.train_op
-            fetches["latent_loss"] = model.latent_loss
+
+           # fetches["latent_loss"] = model.latent_loss
             fetches["total_loss"] = model.total_loss
 
 
-            if isinstance(model.learning_rate, tf.Tensor):
-                fetches["learning_rate"] = model.learning_rate
+           # if isinstance(model.learning_rate, tf.Tensor):
+           #     fetches["learning_rate"] = model.learning_rate
 
             fetches["summary"] = model.summary_op
 
@@ -210,21 +213,25 @@ def main():
             X = inputs["images"].eval(session=sess)           
             #results = sess.run(fetches,feed_dict={model.x:X}) #fetch the elements in dictinoary fetch
             results = sess.run(fetches)
+            print ("results global step:",results["global_step"])
             run_elapsed_time = time.time() - run_start_time
             if run_elapsed_time > 1.5 and step > 0 and set(fetches.keys()) == {"global_step", "train_op"}:
                 print('running train_op took too long (%0.1fs)' % run_elapsed_time)
 
             #Run testing results
-            val_fetches = {"global_step": model.global_step}
-            val_fetches["latent_loss"] = model.latent_loss
-            val_fetches["total_loss"] = model.total_loss
+            #val_fetches = {"global_step":global_step}
+            val_fetches = {}
+            #val_fetches["latent_loss"] = model.latent_loss
+            #val_fetches["total_loss"] = model.total_loss
             val_fetches["summary"] = model.summary_op
-            val_results = sess.run(val_fetches)
-
-            summary_writer.add_summary(results["summary"], results["global_step"])
-            summary_writer.add_summary(val_results["summary"], val_results["global_step"])
-
-
+            val_results = sess.run(val_fetches,feed_dict={train_handle: val_handle_eval})
+          
+            summary_writer.add_summary(results["summary"])
+            summary_writer.add_summary(val_results["summary"])
+             
+            #print("results_global_step", results["global_step"])
+            #print("Val_results_global_step", val_results["global_step"])
+           
             val_datasets = [val_dataset]
             val_models = [model]
 
@@ -244,8 +251,9 @@ def main():
             # global_step will have the correct step count if we resume from a checkpoint
             # global step is read before it's incremented
             steps_per_epoch = train_dataset.num_examples_per_epoch() / batch_size
-            train_epoch = results["global_step"] / steps_per_epoch
-            print("progress  global step %d  epoch %0.1f" % (results["global_step"] + 1, train_epoch))
+            #train_epoch = results["global_step"] / steps_per_epoch
+            train_epoch = global_step/steps_per_epoch
+            print("progress  global step %d  epoch %0.1f" % (global_step + 1, train_epoch))
             if step > 0:
                 elapsed_time = time.time() - start_time
                 average_time = elapsed_time / step
@@ -266,7 +274,7 @@ def main():
             print(" Results_total_loss",results["total_loss"])
             
             print("saving model to", args.output_dir)
-            saver.save(sess, os.path.join(args.output_dir, "model"), global_step=model.global_step)
+            saver.save(sess, os.path.join(args.output_dir, "model"), global_step=step)##Bing: cheat here a little bit because of the global step issue
             print("done")
             #global_step = global_step + 1
 if __name__ == '__main__':
diff --git a/video_prediction/layers/layer_def.py b/video_prediction/layers/layer_def.py
index 35a7c910e0b3ec12cb9fdc3cbb9ceda3a86922dd..6b7f4387001c9318507ad809d7176071312742d0 100644
--- a/video_prediction/layers/layer_def.py
+++ b/video_prediction/layers/layer_def.py
@@ -28,11 +28,11 @@ def _variable_on_cpu(name, shape, initializer):
       Variable Tensor
     """
     with tf.device('/cpu:0'):
-        var = tf.get_variable(name, shape, initializer = initializer)
+        var = tf.get_variable(name, shape, initializer=initializer)
     return var
 
 
-def _variable_with_weight_decay(name, shape, stddev, wd):
+def _variable_with_weight_decay(name, shape, stddev, wd,initializer=tf.contrib.layers.xavier_initializer()):
     """Helper to create an initialized Variable with weight decay.
     Note that the Variable is initialized with a truncated normal distribution.
     A weight decay is added only if one is specified.
@@ -45,8 +45,8 @@ def _variable_with_weight_decay(name, shape, stddev, wd):
     Returns:
       Variable Tensor
     """
-    var = _variable_on_cpu(name, shape,tf.truncated_normal_initializer(stddev = stddev))
-    #var = _variable_on_cpu(name, shape,tf.contrib.layers.xavier_initializer())
+    #var = _variable_on_cpu(name, shape,tf.truncated_normal_initializer(stddev = stddev))
+    var = _variable_on_cpu(name, shape, initializer)
     if wd:
         weight_decay = tf.multiply(tf.nn.l2_loss(var), wd, name = 'weight_loss')
         weight_decay.set_shape([])
@@ -54,16 +54,16 @@ def _variable_with_weight_decay(name, shape, stddev, wd):
     return var
 
 
-def conv_layer(inputs, kernel_size, stride, num_features, idx, activate="relu"):
+def conv_layer(inputs, kernel_size, stride, num_features, idx, initializer=tf.contrib.layers.xavier_initializer() , activate="relu"):
     print("conv_layer activation function",activate)
     
     with tf.variable_scope('{0}_conv'.format(idx)) as scope:
-        print ("DEBUG input shape",inputs.get_shape())
+ 
         input_channels = inputs.get_shape()[-1]
         weights = _variable_with_weight_decay('weights',shape = [kernel_size, kernel_size, 
                                                                  input_channels, num_features],
                                               stddev = 0.01, wd = weight_decay)
-        biases = _variable_on_cpu('biases', [num_features], tf.contrib.layers.xavier_initializer())
+        biases = _variable_on_cpu('biases', [num_features], initializer)
         conv = tf.nn.conv2d(inputs, weights, strides = [1, stride, stride, 1], padding = 'SAME')
         conv_biased = tf.nn.bias_add(conv, biases)
         if activate == "linear":
@@ -72,25 +72,25 @@ def conv_layer(inputs, kernel_size, stride, num_features, idx, activate="relu"):
             conv_rect = tf.nn.relu(conv_biased, name = '{0}_conv'.format(idx))  
         elif activate == "elu":
             conv_rect = tf.nn.elu(conv_biased, name = '{0}_conv'.format(idx))   
+        elif activate == "leaky_relu":
+            conv_rect = tf.nn.leaky_relu(conv_biased, name = '{0}_conv'.format(idx))
         else:
             raise ("activation function is not correct")
-
         return conv_rect
 
 
-def transpose_conv_layer(inputs, kernel_size, stride, num_features, idx, activate="relu"):
+def transpose_conv_layer(inputs, kernel_size, stride, num_features, idx, initializer=tf.contrib.layers.xavier_initializer(),activate="relu"):
     with tf.variable_scope('{0}_trans_conv'.format(idx)) as scope:
         input_channels = inputs.get_shape()[3]
         input_shape = inputs.get_shape().as_list()
-        print("input_channel",input_channels)
+
 
         weights = _variable_with_weight_decay('weights',
                                               shape = [kernel_size, kernel_size, num_features, input_channels],
                                               stddev = 0.1, wd = weight_decay)
-        biases = _variable_on_cpu('biases', [num_features], tf.contrib.layers.xavier_initializer())
+        biases = _variable_on_cpu('biases', [num_features],initializer)
         batch_size = tf.shape(inputs)[0]
-#         output_shape = tf.stack(
-#             [tf.shape(inputs)[0], tf.shape(inputs)[1] * stride, tf.shape(inputs)[2] * stride, num_features])
+
         output_shape = tf.stack(
             [tf.shape(inputs)[0], input_shape[1] * stride, input_shape[2] * stride, num_features])
         print ("output_shape",output_shape)
@@ -102,11 +102,15 @@ def transpose_conv_layer(inputs, kernel_size, stride, num_features, idx, activat
             return tf.nn.elu(conv_biased, name = '{0}_transpose_conv'.format(idx))       
         elif activate == "relu":
             return tf.nn.relu(conv_biased, name = '{0}_transpose_conv'.format(idx))
+        elif activate == "leaky_relu":
+            return tf.nn.leaky_relu(conv_biased, name = '{0}_transpose_conv'.format(idx))
+        elif activate == "sigmoid":
+            return tf.nn.sigmoid(conv_biased, name ='sigmoid') 
         else:
-            return None
+            return conv_biased
     
 
-def fc_layer(inputs, hiddens, idx, flat=False, activate="relu",weight_init=0.01):
+def fc_layer(inputs, hiddens, idx, flat=False, activate="relu",weight_init=0.01,initializer=tf.contrib.layers.xavier_initializer()):
     with tf.variable_scope('{0}_fc'.format(idx)) as scope:
         input_shape = inputs.get_shape().as_list()
         if flat:
@@ -118,7 +122,7 @@ def fc_layer(inputs, hiddens, idx, flat=False, activate="relu",weight_init=0.01)
 
         weights = _variable_with_weight_decay('weights', shape = [dim, hiddens], stddev = weight_init,
                                               wd = weight_decay)
-        biases = _variable_on_cpu('biases', [hiddens],tf.contrib.layers.xavier_initializer())
+        biases = _variable_on_cpu('biases', [hiddens],initializer)
         if activate == "linear":
             return tf.add(tf.matmul(inputs_processed, weights), biases, name = str(idx) + '_fc')
         elif activate == "sigmoid":
@@ -127,15 +131,30 @@ def fc_layer(inputs, hiddens, idx, flat=False, activate="relu",weight_init=0.01)
             return tf.nn.softmax(tf.add(tf.matmul(inputs_processed, weights), biases, name = str(idx) + '_fc'))
         elif activate == "relu":
             return tf.nn.relu(tf.add(tf.matmul(inputs_processed, weights), biases, name = str(idx) + '_fc'))
+        elif activate == "leaky_relu":
+            return tf.nn.leaky_relu(tf.add(tf.matmul(inputs_processed, weights), biases, name = str(idx) + '_fc'))        
         else:
             ip = tf.add(tf.matmul(inputs_processed, weights), biases)
             return tf.nn.elu(ip, name = str(idx) + '_fc')
         
-def bn_layers(inputs,idx,epsilon = 1e-3):
+def bn_layers(inputs,idx,is_training=True,epsilon=1e-3,decay=0.99,reuse=None):
     with tf.variable_scope('{0}_bn'.format(idx)) as scope:
-        # Calculate batch mean and variance
-        batch_mean, batch_var = tf.nn.moments(inputs,[0])
-        tz1_hat = (inputs - batch_mean) / tf.sqrt(batch_var + epsilon)
-        l1_BN = tf.nn.sigmoid(tz1_hat)
+        #Calculate batch mean and variance
+        shape = inputs.get_shape().as_list()
+        scale = tf.get_variable("gamma", shape[-1], initializer=tf.constant_initializer(1.0), trainable=is_training)
+        beta = tf.get_variable("beta", shape[-1], initializer=tf.constant_initializer(0.0), trainable=is_training)
+        pop_mean = tf.Variable(tf.zeros([inputs.get_shape()[-1]]), trainable=False)
+        pop_var = tf.Variable(tf.ones([inputs.get_shape()[-1]]), trainable=False)
         
-    return l1_BN
\ No newline at end of file
+        if is_training:
+            batch_mean, batch_var = tf.nn.moments(inputs,[0])
+            train_mean = tf.assign(pop_mean,pop_mean * decay + batch_mean * (1 - decay))
+            train_var = tf.assign(pop_var, pop_var * decay + batch_var * (1 - decay))
+            with tf.control_dependencies([train_mean,train_var]):
+                 return tf.nn.batch_normalization(inputs,batch_mean,batch_var,beta,scale,epsilon)
+        else:
+             return tf.nn.batch_normalization(inputs,pop_mean,pop_var,beta,scale,epsilon)
+
+def bn_layers_wrapper(inputs, is_training):
+    pass
+   
\ No newline at end of file
diff --git a/video_prediction/models/__init__.py b/video_prediction/models/__init__.py
index ea1fa77f821827b61c3c2cbfa362014c1da20faf..4103a236ab6430d701bae28ee9b6ff6670b110fa 100644
--- a/video_prediction/models/__init__.py
+++ b/video_prediction/models/__init__.py
@@ -8,6 +8,7 @@ from .dna_model import DNAVideoPredictionModel
 from .sna_model import SNAVideoPredictionModel
 from .sv2p_model import SV2PVideoPredictionModel
 from .vanilla_vae_model import VanillaVAEVideoPredictionModel
+from .vanilla_convLSTM_model import VanillaConvLstmVideoPredictionModel
 
 def get_model_class(model):
     model_mappings = {
@@ -18,6 +19,7 @@ def get_model_class(model):
         'sna': 'SNAVideoPredictionModel',
         'sv2p': 'SV2PVideoPredictionModel',
         'vae': 'VanillaVAEVideoPredictionModel',
+        'convLSTM': 'VanillaConvLstmVideoPredictionModel'
     }
     model_class = model_mappings.get(model, model)
     model_class = globals().get(model_class)
diff --git a/video_prediction/models/vanilla_convLSTM_model.py b/video_prediction/models/vanilla_convLSTM_model.py
index de4a05dc1d7720e2bc5259fcdc90d1748a46ddd1..6cb07df7f7cb72fa0943299adbc18a7641636521 100644
--- a/video_prediction/models/vanilla_convLSTM_model.py
+++ b/video_prediction/models/vanilla_convLSTM_model.py
@@ -14,14 +14,14 @@ from video_prediction.utils import tf_utils
 from datetime import datetime
 from pathlib import Path
 from video_prediction.layers import layer_def as ld
-from video_prediction.layers import BasicConvLSTMCell
+from video_prediction.layers.BasicConvLSTMCell import BasicConvLSTMCell
 
-class VanillaVAEVideoPredictionModel(BaseVideoPredictionModel):
-    def __init__(self, mode='train', hparams_dict=None,
+class VanillaConvLstmVideoPredictionModel(BaseVideoPredictionModel):
+    def __init__(self, mode='train',aggregate_nccl=None, hparams_dict=None,
                  hparams=None, **kwargs):
-        super(VanillaVAEVideoPredictionModel, self).__init__(mode, hparams_dict, hparams, **kwargs)
+        super(VanillaConvLstmVideoPredictionModel, self).__init__(mode, hparams_dict, hparams, **kwargs)
+        print ("Hparams_dict",self.hparams)
         self.mode = mode
-        self.hparams = hparams
         self.learning_rate = self.hparams.lr
         self.gen_images_enc = None
         self.recon_loss = None
@@ -30,7 +30,8 @@ class VanillaVAEVideoPredictionModel(BaseVideoPredictionModel):
         self.context_frames = 10
         self.sequence_length = 20
         self.predict_frames = self.sequence_length - self.context_frames
-
+        self.aggregate_nccl=aggregate_nccl
+    
     def get_default_hparams_dict(self):
         """
         The keys of this dict define valid hyperparameters for instances of
@@ -56,23 +57,24 @@ class VanillaVAEVideoPredictionModel(BaseVideoPredictionModel):
                 `sequence_length - context_frames` future frames. Must be
                 specified during instantiation.
         """
-        default_hparams = super(VanillaVAEVideoPredictionModel, self).get_default_hparams_dict()
+        default_hparams = super(VanillaConvLstmVideoPredictionModel, self).get_default_hparams_dict()
+        print ("default hparams",default_hparams)
         hparams = dict(
             batch_size=16,
             lr=0.001,
             end_lr=0.0,
+            nz=16,
             decay_steps=(200000, 300000),
             max_steps=350000,
         )
+
         return dict(itertools.chain(default_hparams.items(), hparams.items()))
 
     def build_graph(self, x):
-        global_step = tf.train.get_or_create_global_step()
-        original_global_variables = tf.global_variables()
-        tf.reset_default_graph()
+        self.x = x["images"]
+        #self.global_step = tf.train.get_or_create_global_step()
         self.global_step = tf.Variable(0, name = 'global_step', trainable = False)
-        self.increment_global_step = tf.assign_add(self.global_step, 1, name = 'increment_global_step')
-
+        original_global_variables = tf.global_variables()
         # ARCHITECTURE
         self.x_hat_context_frames, self.x_hat_predict_frames = self.convLSTM_network()
         self.x_hat = tf.concat([self.x_hat_context_frames, self.x_hat_predict_frames], 1)
@@ -93,7 +95,7 @@ class VanillaVAEVideoPredictionModel(BaseVideoPredictionModel):
         self.loss_summary = tf.summary.scalar("total_loss", self.total_loss)
         self.summary_op = tf.summary.merge_all()
         global_variables = [var for var in tf.global_variables() if var not in original_global_variables]
-        self.saveable_variables = [global_step] + global_variables
+        self.saveable_variables = [self.global_step] + global_variables
         return
 
 
@@ -108,8 +110,9 @@ class VanillaVAEVideoPredictionModel(BaseVideoPredictionModel):
         print("Encode 3_shape, ", conv3.shape)
         y_0 = conv3
         # conv lstm cell
+        cell_shape = y_0.get_shape().as_list()
         with tf.variable_scope('conv_lstm', initializer = tf.random_uniform_initializer(-.01, 0.1)):
-            cell = BasicConvLSTMCell(shape = [16, 16], filter_size = [3, 3], num_features = 8)
+            cell = BasicConvLSTMCell(shape = [cell_shape[1], cell_shape[2]], filter_size = [3, 3], num_features = 8)
             if hidden is None:
                 hidden = cell.zero_state(y_0, tf.float32)
                 print("hidden zero layer", hidden.shape)
@@ -133,7 +136,7 @@ class VanillaVAEVideoPredictionModel(BaseVideoPredictionModel):
 
     def convLSTM_network(self):
         network_template = tf.make_template('network',
-                                            convLSTM.convLSTM_cell)  # make the template to share the variables
+                                            VanillaConvLstmVideoPredictionModel.convLSTM_cell)  # make the template to share the variables
         # create network
         x_hat_context = []
         x_hat_predict = []
@@ -155,4 +158,4 @@ class VanillaVAEVideoPredictionModel(BaseVideoPredictionModel):
         x_hat_predict = tf.stack(x_hat_predict)
         self.x_hat_context = tf.transpose(x_hat_context, [1, 0, 2, 3, 4])  # change first dim with sec dim
         self.x_hat_predict = tf.transpose(x_hat_predict, [1, 0, 2, 3, 4])  # change first dim with sec dim
-        return self.x_hat_context, self.x_hat_predict
\ No newline at end of file
+        return self.x_hat_context, self.x_hat_predict
diff --git a/video_prediction/models/vanilla_vae_model.py b/video_prediction/models/vanilla_vae_model.py
index 1ae1eb06351dd11fa2fd8269f4966a682c9341fd..74280896dca61007c1b361ec4caff9ad5f718d26 100644
--- a/video_prediction/models/vanilla_vae_model.py
+++ b/video_prediction/models/vanilla_vae_model.py
@@ -79,11 +79,14 @@ class VanillaVAEVideoPredictionModel(BaseVideoPredictionModel):
         #print ("self_x:",self.x)
         #tf.reset_default_graph()
         #self.x = tf.placeholder(tf.float32, [None,20,64,64,3])
+        tf.set_random_seed(12345)
         self.x = x["images"]
-        self.global_step = tf.train.get_or_create_global_step()
+        
+        #self.global_step = tf.train.get_or_create_global_step()
+        self.global_step = tf.Variable(0, name = 'global_step', trainable = False)
         original_global_variables = tf.global_variables()
-        #self.global_step = tf.Variable(0, name = 'global_step', trainable = False)
-        #self.increment_global_step = tf.assign_add(self.global_step, 1, name = 'increment_global_step')
+        self.increment_global_step = tf.assign_add(self.global_step, 1, name = 'increment_global_step')
+
         self.x_hat, self.z_log_sigma_sq, self.z_mu = self.vae_arc_all()
         # Loss
         # Reconstruction loss
@@ -129,6 +132,7 @@ class VanillaVAEVideoPredictionModel(BaseVideoPredictionModel):
         self.outputs["gen_images"] = self.x_hat
         global_variables = [var for var in tf.global_variables() if var not in original_global_variables]
         self.saveable_variables = [self.global_step] + global_variables
+        #train_op = tf.assign_add(global_step, 1)
         return