diff --git a/video_prediction_savp/scripts/train_dummy.py b/video_prediction_savp/scripts/train_dummy.py
index 4dd111321c1584c029ef23f91df9b65e47d125cc..0cdaafb09ca725e4f38c9381f59ea0267f9dc345 100644
--- a/video_prediction_savp/scripts/train_dummy.py
+++ b/video_prediction_savp/scripts/train_dummy.py
@@ -192,9 +192,21 @@ def save_results_to_pkl(train_losses,val_losses, output_dir):
         pkl.dump(train_losses,f)
      with open(os.path.join(output_dir,"val_losses.pkl"),"wb") as f:
         pkl.dump(val_losses,f) 
- 
+
+# +++ Scarlet 20200917 
+def save_timing_to_pkl(total_time,training_time,time_per_iteration, output_dir):
+     with open(os.path.join(output_dir,"timing_total_time.pkl"),"wb") as f:
+        pkl.dump(total_time,f)
+     with open(os.path.join(output_dir,"timing_training_time.pkl"),"wb") as f:
+        pkl.dump(training_time,f)
+     with open(os.path.join(output_dir,"timing_per_iteration_time.pkl"),"wb") as f:
+        pkl.dump(time_per_iteration,f)
+# --- Scarlet 20200917 
 
 def main():
+    # +++ Scarlet 20200917
+    timeit_start_total_time = time.time()  
+    # --- Scarlet 20200917
 
     parser = argparse.ArgumentParser()
     parser.add_argument("--input_dir", type=str, required=True, help="either a directory containing subdirectories "
@@ -273,7 +285,15 @@ def main():
     print ("number of exmaples per epoch:",num_examples_per_epoch)
     steps_per_epoch = int(num_examples_per_epoch/batch_size)
     #number of steps totally equal to the number of steps per each echo multiple by number of epochs
-    total_steps = steps_per_epoch * max_epochs
+
+    # Please comment in again this line:
+    #total_steps = steps_per_epoch * max_epochs
+
+    #+++++ Scarlet Booster testing ONLY!
+    total_steps = 1
+    #----- Scarlet
+
+
     global_step = tf.train.get_or_create_global_step()
     #mock total_steps only for fast debugging
     #total_steps = 10
@@ -292,7 +312,10 @@ def main():
         # step is relative to the start_step
         train_losses=[]
         val_losses=[]
-        run_start_time = time.time()        
+        # +++ Scarlet 20200917
+        time_per_iteration = []
+        # --- Scarlet 20200917
+        run_start_time = time.time()       
         for step in range(start_step,total_steps):
             #global_step = sess.run(global_step)
             # +++ Scarlet 20200813
@@ -367,6 +390,7 @@ def main():
             timeit_end = time.time()  
             # --- Scarlet 20200813
             print("time needed for this step", timeit_end - timeit_start, ' s')
+            time_per_iteration.append(timeit_end - timeit_start)
             if step % 20 == 0:
                 # I save the pickle file and plot here inside the loop in case the training process cannot finished after job is done.
                 save_results_to_pkl(train_losses,val_losses,args.output_dir)
@@ -385,6 +409,11 @@ def main():
         # +++ Scarlet 20200814
         print("Total training time:", train_time/60., "min")
         # +++ Scarlet 20200814
+        # +++ Scarlet 20200917
+        total_run_time = time.time() - timeit_start_total_time
+        print("Total run time:", total_run_time/60., "min")
+        save_timing_to_pkl(total_run_time,train_time,time_per_iteration, args.output_dir)
+        # +++ Scarlet 20200917
         
 if __name__ == '__main__':
     main()