diff --git a/video_prediction_savp/scripts/generate_transfer_learning_finetune.py b/video_prediction_savp/scripts/generate_transfer_learning_finetune.py
index 82ba3a6adb900e3456aeffd203180bd429b234f7..fdeb585e60298411bd768fadbb2800dcfd574364 100644
--- a/video_prediction_savp/scripts/generate_transfer_learning_finetune.py
+++ b/video_prediction_savp/scripts/generate_transfer_learning_finetune.py
@@ -337,11 +337,13 @@ def get_persistence(ts, input_dir_pkl):
     Inputs:
     ts: output by generate_seq_timestamps(t_start,len_seq=sequence_length)
         Is a list containing dateime objects
+        
+    input_dir_pkl: input directory to pickle files
     
     Ouputs:
-    ts_persistence:    list containing the dates and times of the 
+    time_persistence:    list containing the dates and times of the 
                        persistence forecast.
-    peristence_images: sequence of images corresponding to the times
+    var_peristence  : sequence of images corresponding to the times
                        in ts_persistence
     """
     ts_persistence = []
@@ -354,26 +356,40 @@ def get_persistence(ts, input_dir_pkl):
     month_start = t_persistence_start.month
     month_end = t_persistence_end.month
     
-    if month_start == month_end:
-        pass
-    else: # case that we need to derive the data from two pickle files
+    # only one pickle file is needed (all hours during the same month)
+    if month_start == month_end: 
+        # Open files to search for the indizes of the corresponding time
+        time_pickle  = load_pickle_for_persistence(input_dir_pkl, year_start, month_start, 'T')
+        # Open file to search for the correspoding meteorological fields
+        var_pickle  = load_pickle_for_persistence(input_dir_pkl, year_start, month_start, 'X')
+        # Retrieve starting index
+        ind = list(time_pickle).index(np.array(ts_persistence[0]))
+        #print('Scarlet, Original', ts_persistence)
+        #print('From Pickle', time_pickle[ind:ind+len(ts_persistence)])
+        
+        var_persistence  = var_pickle[ind:ind+len(ts_persistence)]
+        time_persistence = time_pickle[ind:ind+len(ts_persistence)].ravel()
+        print(' Scarlet Shape of time persistence',time_persistence.shape)
+        #print(' Scarlet Shape of var persistence',var_persistence.shape)
+    
+    
+    # case that we need to derive the data from two pickle files (changing month during the forecast periode)
+    else: 
         t_persistence_first_m  = [] # should hold dates of the first month
         t_persistence_second_m = [] # should hold dates of the second month
+        
         for t in range(len(ts)):
             m = ts_persistence[t].month
             if m == month_start:
                 t_persistence_first_m.append(ts_persistence[t])
             if m == month_end:
                 t_persistence_second_m.append(ts_persistence[t])
-        # Open files to search for the indizes
-        #path_to_pickle = input_dir_pkl+'/'+str(year_start)+'/T_{:02}.pkl'.format(month_start)        
-        #infile = open(path_to_pickle,'rb')
+        
+        # Open files to search for the indizes of the corresponding time
         time_pickle_first  = load_pickle_for_persistence(input_dir_pkl, year_start, month_start, 'T')
         time_pickle_second = load_pickle_for_persistence(input_dir_pkl, year_start, month_end, 'T')
         
         # Open file to search for the correspoding meteorological fields
-        #path_to_pickle = input_dir_pkl+'/'+str(year_start)+'/X_{:02}.pkl'.format(month_start)        
-        #infile = open(path_to_pickle,'rb')
         var_pickle_first  = load_pickle_for_persistence(input_dir_pkl, year_start, month_start, 'X')
         var_pickle_second = load_pickle_for_persistence(input_dir_pkl, year_start, month_end, 'X')
         
@@ -381,16 +397,25 @@ def get_persistence(ts, input_dir_pkl):
         ind_first_m = list(time_pickle_first).index(np.array(t_persistence_first_m[0]))
         ind_second_m = list(time_pickle_second).index(np.array(t_persistence_second_m[0]))
         
-        # construct following indices and store them in a list - DO I NEED THAT?
-        idx_fist = construct_index(ind_second_m, t_persistence_second_m)
-        idx_second = construct_index(ind_second_m, t_persistence_second_m)
-        print('Scarlet this is the index {} in month {}'.format(ind_first_m, month_start))
-        print('length sequence first month', len(t_persistence_first_m))
-        print('Scarlet this is the index {} in month {}'.format(ind_second_m, month_end))
-        print('length sequence second month', len(t_persistence_second_m))
-        print('Original', ts_persistence)
-        print('From Pickle', time_pickle_first[ind_first_m:ind_first_m+len(t_persistence_first_m)])
+        #print('Scarlet, Original', ts_persistence)
+        #print('From Pickle', time_pickle_first[ind_first_m:ind_first_m+len(t_persistence_first_m)], time_pickle_second[ind_second_m:ind_second_m+len(t_persistence_second_m)])
+        #print(' Scarlet before', time_pickle_first[ind_first_m:ind_first_m+len(t_persistence_first_m)].shape, time_pickle_second[ind_second_m:ind_second_m+len(t_persistence_second_m)].shape)
         
+        # append the sequence of the second month to the first month
+        var_persistence  = np.concatenate((var_pickle_first[ind_first_m:ind_first_m+len(t_persistence_first_m)], 
+                                          var_pickle_second[ind_second_m:ind_second_m+len(t_persistence_second_m)]), 
+                                          axis=0)
+        time_persistence = np.concatenate((time_pickle_first[ind_first_m:ind_first_m+len(t_persistence_first_m)],
+                                          time_pickle_second[ind_second_m:ind_second_m+len(t_persistence_second_m)]), 
+                                          axis=0).ravel() # ravel is needed to eliminate the unnecessary dimension (20,1) becomes (20,)
+        print(' Scarlet concatenate and ravel (time)', var_persistence.shape, time_persistence.shape)
+            
+            
+    # tolist() is needed for plotting
+    return var_persistence, time_persistence.tolist()
+
+    
+    
 def load_pickle_for_persistence(input_dir_pkl, year_start, month_start, pkl_type):
     """Helper to get the content of the pickle files. There are two types in our workflow:
     T_[month].pkl where the time stamp is stored
@@ -402,37 +427,6 @@ def load_pickle_for_persistence(input_dir_pkl, year_start, month_start, pkl_type
     var = pickle.load(infile)
     return var
 
-def construct_index(first_idx, sequence):
-    """Helper function to construct the idx sequences from the starting index and the lenght 
-    of the squence.
-    Wait do I even need a sequence????"""
-    idx_list = []
-    for i in range(first_idx, first_idx+len(sequence)):
-        #print(i)
-        idx_list.append(i)
-    return idx_list
-        
-    
-    # Oder stuff: 
-        # Retrieve indizes
-        #print(list(time_pickle))
-        #for item in time_pickle:
-        #    time_pickle_list.append(item)
-        #print(time_pickle_list)
-        #print(time_pickle)
-        #print(t_persistence_first_m)
-        #idx_first_m = time_pickle_list.index(t_persistence_first_m) 
-        #print('Scarlet, indizes', idx_first_m)
-        
-    #persistent_idx = list(test_temporal_pkl).index(np.array(persistent_ts))
-    #path_to_pickle = input_dir_pkl+'/'+str(year_start)+'/X_{:02}.pkl'.format(month_start)
-    #print('hypothetical path', path_to_pickle)
-    
-    #infile = open(path_to_pickle,'rb')
-    #print('Scarlet start persistence and start regular', t_persistence_start, ts[0] )
-    
-    
-    #return ts_persistence, peristence_images
 
 def main():
     parser = argparse.ArgumentParser()
@@ -582,9 +576,17 @@ def main():
             #Generate forecast images
             plot_seq_imgs(imgs=gen_images_denorm[context_frames:,:,:,0],lats=lats,lons=lons,ts=ts[context_frames+1:],label="Forecast by Model " + args.model,output_png_dir=args.results_dir) 
             
-            #+++ Scarlet 20200828
-            get_persistence(ts, input_dir_pkl)
-            #--- Scarlet 20200528
+            #+++ Scarlet 20200922
+            print('Scarlet', type(ts[context_frames+1:]))
+            print('ts', ts[context_frames+1:])
+            print('context_frames:', context_frames)
+            persistence_images, ts_persistence = get_persistence(ts, input_dir_pkl)
+            print('Scarlet', type(ts_persistence))
+            # I am not sure about the number of frames given with context_frames and context_frames +1
+            plot_seq_imgs(imgs=persistence_images[context_frames+1:,:,:,0],lats=lats,lons=lons,ts=ts_persistence[context_frames+1:], 
+                          label="Persistence Forecast" + args.model,output_png_dir=args.results_dir)
+            #--- Scarlet 20200922
+            
             #in case of generate the images for all the input, we just generate the first 5 sampe_ind examples for visuliation
 
         sample_ind += args.batch_size