diff --git a/video_prediction_tools/main_scripts/main_visualize_postprocess.py b/video_prediction_tools/main_scripts/main_visualize_postprocess.py
index 58cb731f1b83d73e47598684118dee5556e65590..e7d982c12acaddb9352299240181152ef880e522 100644
--- a/video_prediction_tools/main_scripts/main_visualize_postprocess.py
+++ b/video_prediction_tools/main_scripts/main_visualize_postprocess.py
@@ -31,7 +31,7 @@ from postprocess_plotting import plot_avg_eval_metrics, plot_cond_quantile, crea
 
 class Postprocess(TrainModel):
     def __init__(self, results_dir=None, checkpoint=None, mode="test", batch_size=None, num_stochastic_samples=1,
-                 stochastic_plot_id=0, seed=None, channel=0, args=None, run_mode="deterministic",
+                 stochastic_plot_id=0, gpu_mem_frac=None, seed=None, channel=0, args=None, run_mode="deterministic",
                  eval_metrics=None):
         """
         Initialization of the class instance for postprocessing (generation of forecasts from trained model +
@@ -43,6 +43,7 @@ class Postprocess(TrainModel):
         :param num_stochastic_samples: number of ensemble members for variational models (SAVP, VAE), default: 1
                                        not supported yet!!!
         :param stochastic_plot_id: not supported yet!
+        :param gpu_mem_frac: fraction of GPU memory to be pre-allocated
         :param seed: Integer controlling randomization
         :param channel: Channel of interest for statistical evaluation
         :param args: namespace of parsed arguments
@@ -53,6 +54,7 @@ class Postprocess(TrainModel):
         self.results_dir = self.output_dir = os.path.normpath(results_dir)
         _ = check_dir(self.results_dir, lcreate=True)
         self.batch_size = batch_size
+        self.gpu_mem_frac = gpu_mem_frac
         self.seed = seed
         self.set_seed()
         self.num_stochastic_samples = num_stochastic_samples
@@ -70,7 +72,7 @@ class Postprocess(TrainModel):
         self.nboots_block = 1000
         self.block_length = 7 * 24  # this corresponds to a block length of 7 days in case of hourly forecasts
 
-        # initialize everything to get an executable Postprocess instance
+        # initialize evrything to get an executable Postprocess instance
         self.save_args_to_option_json()     # create options.json-in results directory
         self.copy_data_model_json()         # copy over JSON-files from model directory
         # get some parameters related to model and dataset