diff --git a/.gitignore b/.gitignore
index 89ee339d7db35050d01bffac0b57d6599728ca3e..a9ce31b15403c356750cee6afa62ee3b665e35f3 100644
--- a/.gitignore
+++ b/.gitignore
@@ -116,3 +116,5 @@ ENV/
 **/logs
 **/vp
 **/hickle
+*.tfrecords
+**/era5_size_64_64_3_3t_norm
diff --git a/HPC_scripts/generate_era5.sh b/HPC_scripts/generate_era5.sh
index 47791cfd49a7cba4ef2a2681d753bf5cca537462..fdac638fb39e1261d897fd36d36fa5b3dfb00b74 100755
--- a/HPC_scripts/generate_era5.sh
+++ b/HPC_scripts/generate_era5.sh
@@ -21,5 +21,5 @@ module load TensorFlow/1.13.1-GPU-Python-3.6.8
 module load netcdf4-python/1.5.0.1-Python-3.6.8
 module load h5py/2.9.0-Python-3.6.8
 
-python ../scripts/generate_transfer_learning_finetune.py --input_dir ../data/era5_size_64_64_3_norm_dup --dataset_hparams sequence_length=20 --checkpoint ../logs/era5_64_64_3_norm_2016/ours_savp --mode test --results_dir ../results_test_samples/era5_size_64_64_3_norm_2016  --batch_size 4 --dataset era5 
+python ../scripts/generate_transfer_learning_finetune.py --input_dir ../data/era5_size_64_64_3_3t_norm --dataset_hparams sequence_length=20 --checkpoint /p/project/deepacf/deeprain/bing/video_prediction_savp_backup/logs/era5_size_64_64_3_3t_norm/end_to_end/ours_savp  --mode test --results_dir ../results_test_samples/era5_size_64_64_3_3t_norm  --batch_size 4 --dataset era5 
 #srun  python scripts/train.py --input_dir data/era5 --dataset era5  --model savp --model_hparams_dict hparams/kth/ours_savp/model_hparams.json --output_dir logs/era5/ours_savp
diff --git a/data/download_and_preprocess_dataset.sh b/bash/download_and_preprocess_dataset.sh
similarity index 100%
rename from data/download_and_preprocess_dataset.sh
rename to bash/download_and_preprocess_dataset.sh
diff --git a/bash/download_and_preprocess_dataset_era5.sh b/bash/download_and_preprocess_dataset_era5.sh
index e71d47639f6bd9d25e26b48f87f16d5dad8ba89f..eacc01801b5e323ea8da8d7adc97c8156172fd7b 100644
--- a/bash/download_and_preprocess_dataset_era5.sh
+++ b/bash/download_and_preprocess_dataset_era5.sh
@@ -103,6 +103,7 @@ esac
 done
 
 echo "DATA  = ${DATA} "
+
 echo "OUTPUT_DIRECTORY = ${OUTPUT_DIR}"
 
 if [ -d $INPUT_DIR ]; then
@@ -115,8 +116,9 @@ fi
 
 
 if [ $DATA = "era5" ]; then
+
   mkdir -p ${OUTPUT_DIR}
-  python3 video_prediction/datasets/era5_dataset.py ${INPUT_DIR}  ${OUTPUT_DIR}
+  python video_prediction/datasets/era5_dataset.py $INPUT_DIR  ${OUTPUT_DIR}
 else
   echo "dataset name: '$DATA' (choose from 'era5')" >&2
   exit 1
diff --git a/data/download_and_preprocess_dataset_v1.sh b/bash/download_and_preprocess_dataset_v1.sh
similarity index 100%
rename from data/download_and_preprocess_dataset_v1.sh
rename to bash/download_and_preprocess_dataset_v1.sh
diff --git a/data/download_and_preprocess_dataset_era5.sh b/data/download_and_preprocess_dataset_era5.sh
deleted file mode 100644
index eacc01801b5e323ea8da8d7adc97c8156172fd7b..0000000000000000000000000000000000000000
--- a/data/download_and_preprocess_dataset_era5.sh
+++ /dev/null
@@ -1,127 +0,0 @@
-#!/usr/bin/env bash
-
-# exit if any command fails
-set -e
-
-
-#if [ "$#" -eq 2 ]; then
-#  if [ $1 = "bair" ]; then
-#    echo "IMAGE_SIZE argument is only applicable to kth dataset" >&2
-#    exit 1
-#  fi
-#elif [ "$#" -ne 1 ]; then
-#  echo "Usage: $0 DATASET_NAME [IMAGE_SIZE]" >&2
-#  exit 1
-#fi
-#if [ $1 = "bair" ]; then
-#  TARGET_DIR=./data/bair
-#  mkdir -p ${TARGET_DIR}
-#  TAR_FNAME=bair_robot_pushing_dataset_v0.tar
-#  URL=http://rail.eecs.berkeley.edu/datasets/${TAR_FNAME}
-#  echo "Downloading '$1' dataset (this takes a while)"
-#  #wget ${URL} -O ${TARGET_DIR}/${TAR_FNAME} Bing: on MacOS system , use curl instead of wget
-#  curl ${URL} -O ${TARGET_DIR}/${TAR_FNAME}
-#  tar -xvf ${TARGET_DIR}/${TAR_FNAME} --strip-components=1 -C ${TARGET_DIR}
-#  rm ${TARGET_DIR}/${TAR_FNAME}
-#  mkdir -p ${TARGET_DIR}/val
-#  # reserve a fraction of the training set for validation
-#  mv ${TARGET_DIR}/train/traj_256_to_511.tfrecords ${TARGET_DIR}/val/
-#elif [ $1 = "kth" ]; then
-#  if [ "$#" -eq 2 ]; then
-#    IMAGE_SIZE=$2
-#    TARGET_DIR=./data/kth_${IMAGE_SIZE}
-#  else
-#    IMAGE_SIZE=64
-#  fi
-#  echo ${TARGET_DIR} ${IMAGE_SIZE}
-#  mkdir -p ${TARGET_DIR}
-#  mkdir -p ${TARGET_DIR}/raw
-#  echo "Downloading '$1' dataset (this takes a while)"
-  # TODO Bing: for save time just use walking, need to change back if all the data are needed
-  #for ACTION in walking jogging running boxing handwaving handclapping; do
-#  for ACTION in walking; do
-#    echo "Action: '$ACTION' "
-#    ZIP_FNAME=${ACTION}.zip
-#    URL=http://www.nada.kth.se/cvap/actions/${ZIP_FNAME}
-#   # wget ${URL} -O ${TARGET_DIR}/raw/${ZIP_FNAME}
-#    echo "Start downloading action '$ACTION' ULR '$URL' "
-#    curl ${URL} -O ${TARGET_DIR}/raw/${ZIP_FNAME}
-#    unzip ${TARGET_DIR}/raw/${ZIP_FNAME} -d ${TARGET_DIR}/raw/${ACTION}
-#    echo "Action '$ACTION' data download and unzip "
-#  done
-#  FRAME_RATE=25
-#  mkdir -p ${TARGET_DIR}/processed
-#  # download files with metadata specifying the subsequences
-#  TAR_FNAME=kth_meta.tar.gz
-#  URL=http://rail.eecs.berkeley.edu/models/savp/data/${TAR_FNAME}
-#  echo "Downloading '${TAR_FNAME}' ULR '$URL' "
-#  #wget ${URL} -O ${TARGET_DIR}/processed/${TAR_FNAME}
-#  curl ${URL} -O ${TARGET_DIR}/processed/${TAR_FNAME}
-#  tar -xzvf ${TARGET_DIR}/processed/${TAR_FNAME} --strip 1 -C ${TARGET_DIR}/processed
-  # convert the videos into sequence of downscaled images
-#  echo "Processing '$1' dataset"
-#  #TODO Bing, just use walking for test
-#  #for ACTION in walking jogging running boxing handwaving handclapping; do
-#  #Todo Bing: remove the comments below after testing
-#  for ACTION in walking; do
-#    for VIDEO_FNAME in ${TARGET_DIR}/raw/${ACTION}/*.avi; do
-#      FNAME=$(basename ${VIDEO_FNAME})
-#      FNAME=${FNAME%_uncomp.avi}
-#      echo "FNAME '$FNAME' "
-#      # sometimes the directory is not created, so try until it is
-#      while [ ! -d "${TARGET_DIR}/processed/${ACTION}/${FNAME}" ]; do
-#        mkdir -p ${TARGET_DIR}/processed/${ACTION}/${FNAME}
-#      done
-#      ffmpeg -i ${VIDEO_FNAME} -r ${FRAME_RATE} -f image2 -s ${IMAGE_SIZE}x${IMAGE_SIZE} \
-#      ${TARGET_DIR}/processed/${ACTION}/${FNAME}/image-%03d_${IMAGE_SIZE}x${IMAGE_SIZE}.png
-#    done
-#  done
-#  python video_prediction/datasets/kth_dataset.py ${TARGET_DIR}/processed ${TARGET_DIR} ${IMAGE_SIZE}
-#  rm -rf ${TARGET_DIR}/raw
-#  rm -rf ${TARGET_DIR}/processed
-
-while [[ $# -gt 0 ]] #of the number of passed argument is greater than 0
-do
-key="$1"
-case $key in
-    -d|--data)
-    DATA="$2"
-    shift
-    shift
-    ;;
-    -i|--input_dir)
-    INPUT_DIR="$2"
-    shift
-    shift
-    ;;
-    -o|--output_dir)
-    OUTPUT_DIR="$2"
-    shift
-    shift
-    ;;
-esac
-done
-
-echo "DATA  = ${DATA} "
-
-echo "OUTPUT_DIRECTORY = ${OUTPUT_DIR}"
-
-if [ -d $INPUT_DIR ]; then
-    echo "INPUT DIRECTORY = ${INPUT_DIR}"
-
-else
-    echo "INPUT DIRECTORY '$INPUT_DIR' DOES NOT EXIST"
-    exit 1
-fi
-
-
-if [ $DATA = "era5" ]; then
-
-  mkdir -p ${OUTPUT_DIR}
-  python video_prediction/datasets/era5_dataset.py $INPUT_DIR  ${OUTPUT_DIR}
-else
-  echo "dataset name: '$DATA' (choose from 'era5')" >&2
-  exit 1
-fi
-
-echo "Succesfully finished downloading and preprocessing dataset '$DATA' "
\ No newline at end of file