diff --git a/.gitignore b/.gitignore index 89ee339d7db35050d01bffac0b57d6599728ca3e..a9ce31b15403c356750cee6afa62ee3b665e35f3 100644 --- a/.gitignore +++ b/.gitignore @@ -116,3 +116,5 @@ ENV/ **/logs **/vp **/hickle +*.tfrecords +**/era5_size_64_64_3_3t_norm diff --git a/HPC_scripts/generate_era5.sh b/HPC_scripts/generate_era5.sh index 47791cfd49a7cba4ef2a2681d753bf5cca537462..fdac638fb39e1261d897fd36d36fa5b3dfb00b74 100755 --- a/HPC_scripts/generate_era5.sh +++ b/HPC_scripts/generate_era5.sh @@ -21,5 +21,5 @@ module load TensorFlow/1.13.1-GPU-Python-3.6.8 module load netcdf4-python/1.5.0.1-Python-3.6.8 module load h5py/2.9.0-Python-3.6.8 -python ../scripts/generate_transfer_learning_finetune.py --input_dir ../data/era5_size_64_64_3_norm_dup --dataset_hparams sequence_length=20 --checkpoint ../logs/era5_64_64_3_norm_2016/ours_savp --mode test --results_dir ../results_test_samples/era5_size_64_64_3_norm_2016 --batch_size 4 --dataset era5 +python ../scripts/generate_transfer_learning_finetune.py --input_dir ../data/era5_size_64_64_3_3t_norm --dataset_hparams sequence_length=20 --checkpoint /p/project/deepacf/deeprain/bing/video_prediction_savp_backup/logs/era5_size_64_64_3_3t_norm/end_to_end/ours_savp --mode test --results_dir ../results_test_samples/era5_size_64_64_3_3t_norm --batch_size 4 --dataset era5 #srun python scripts/train.py --input_dir data/era5 --dataset era5 --model savp --model_hparams_dict hparams/kth/ours_savp/model_hparams.json --output_dir logs/era5/ours_savp diff --git a/data/download_and_preprocess_dataset.sh b/bash/download_and_preprocess_dataset.sh similarity index 100% rename from data/download_and_preprocess_dataset.sh rename to bash/download_and_preprocess_dataset.sh diff --git a/bash/download_and_preprocess_dataset_era5.sh b/bash/download_and_preprocess_dataset_era5.sh index e71d47639f6bd9d25e26b48f87f16d5dad8ba89f..eacc01801b5e323ea8da8d7adc97c8156172fd7b 100644 --- a/bash/download_and_preprocess_dataset_era5.sh +++ b/bash/download_and_preprocess_dataset_era5.sh @@ -103,6 +103,7 @@ esac done echo "DATA = ${DATA} " + echo "OUTPUT_DIRECTORY = ${OUTPUT_DIR}" if [ -d $INPUT_DIR ]; then @@ -115,8 +116,9 @@ fi if [ $DATA = "era5" ]; then + mkdir -p ${OUTPUT_DIR} - python3 video_prediction/datasets/era5_dataset.py ${INPUT_DIR} ${OUTPUT_DIR} + python video_prediction/datasets/era5_dataset.py $INPUT_DIR ${OUTPUT_DIR} else echo "dataset name: '$DATA' (choose from 'era5')" >&2 exit 1 diff --git a/data/download_and_preprocess_dataset_v1.sh b/bash/download_and_preprocess_dataset_v1.sh similarity index 100% rename from data/download_and_preprocess_dataset_v1.sh rename to bash/download_and_preprocess_dataset_v1.sh diff --git a/data/download_and_preprocess_dataset_era5.sh b/data/download_and_preprocess_dataset_era5.sh deleted file mode 100644 index eacc01801b5e323ea8da8d7adc97c8156172fd7b..0000000000000000000000000000000000000000 --- a/data/download_and_preprocess_dataset_era5.sh +++ /dev/null @@ -1,127 +0,0 @@ -#!/usr/bin/env bash - -# exit if any command fails -set -e - - -#if [ "$#" -eq 2 ]; then -# if [ $1 = "bair" ]; then -# echo "IMAGE_SIZE argument is only applicable to kth dataset" >&2 -# exit 1 -# fi -#elif [ "$#" -ne 1 ]; then -# echo "Usage: $0 DATASET_NAME [IMAGE_SIZE]" >&2 -# exit 1 -#fi -#if [ $1 = "bair" ]; then -# TARGET_DIR=./data/bair -# mkdir -p ${TARGET_DIR} -# TAR_FNAME=bair_robot_pushing_dataset_v0.tar -# URL=http://rail.eecs.berkeley.edu/datasets/${TAR_FNAME} -# echo "Downloading '$1' dataset (this takes a while)" -# #wget ${URL} -O ${TARGET_DIR}/${TAR_FNAME} Bing: on MacOS system , use curl instead of wget -# curl ${URL} -O ${TARGET_DIR}/${TAR_FNAME} -# tar -xvf ${TARGET_DIR}/${TAR_FNAME} --strip-components=1 -C ${TARGET_DIR} -# rm ${TARGET_DIR}/${TAR_FNAME} -# mkdir -p ${TARGET_DIR}/val -# # reserve a fraction of the training set for validation -# mv ${TARGET_DIR}/train/traj_256_to_511.tfrecords ${TARGET_DIR}/val/ -#elif [ $1 = "kth" ]; then -# if [ "$#" -eq 2 ]; then -# IMAGE_SIZE=$2 -# TARGET_DIR=./data/kth_${IMAGE_SIZE} -# else -# IMAGE_SIZE=64 -# fi -# echo ${TARGET_DIR} ${IMAGE_SIZE} -# mkdir -p ${TARGET_DIR} -# mkdir -p ${TARGET_DIR}/raw -# echo "Downloading '$1' dataset (this takes a while)" - # TODO Bing: for save time just use walking, need to change back if all the data are needed - #for ACTION in walking jogging running boxing handwaving handclapping; do -# for ACTION in walking; do -# echo "Action: '$ACTION' " -# ZIP_FNAME=${ACTION}.zip -# URL=http://www.nada.kth.se/cvap/actions/${ZIP_FNAME} -# # wget ${URL} -O ${TARGET_DIR}/raw/${ZIP_FNAME} -# echo "Start downloading action '$ACTION' ULR '$URL' " -# curl ${URL} -O ${TARGET_DIR}/raw/${ZIP_FNAME} -# unzip ${TARGET_DIR}/raw/${ZIP_FNAME} -d ${TARGET_DIR}/raw/${ACTION} -# echo "Action '$ACTION' data download and unzip " -# done -# FRAME_RATE=25 -# mkdir -p ${TARGET_DIR}/processed -# # download files with metadata specifying the subsequences -# TAR_FNAME=kth_meta.tar.gz -# URL=http://rail.eecs.berkeley.edu/models/savp/data/${TAR_FNAME} -# echo "Downloading '${TAR_FNAME}' ULR '$URL' " -# #wget ${URL} -O ${TARGET_DIR}/processed/${TAR_FNAME} -# curl ${URL} -O ${TARGET_DIR}/processed/${TAR_FNAME} -# tar -xzvf ${TARGET_DIR}/processed/${TAR_FNAME} --strip 1 -C ${TARGET_DIR}/processed - # convert the videos into sequence of downscaled images -# echo "Processing '$1' dataset" -# #TODO Bing, just use walking for test -# #for ACTION in walking jogging running boxing handwaving handclapping; do -# #Todo Bing: remove the comments below after testing -# for ACTION in walking; do -# for VIDEO_FNAME in ${TARGET_DIR}/raw/${ACTION}/*.avi; do -# FNAME=$(basename ${VIDEO_FNAME}) -# FNAME=${FNAME%_uncomp.avi} -# echo "FNAME '$FNAME' " -# # sometimes the directory is not created, so try until it is -# while [ ! -d "${TARGET_DIR}/processed/${ACTION}/${FNAME}" ]; do -# mkdir -p ${TARGET_DIR}/processed/${ACTION}/${FNAME} -# done -# ffmpeg -i ${VIDEO_FNAME} -r ${FRAME_RATE} -f image2 -s ${IMAGE_SIZE}x${IMAGE_SIZE} \ -# ${TARGET_DIR}/processed/${ACTION}/${FNAME}/image-%03d_${IMAGE_SIZE}x${IMAGE_SIZE}.png -# done -# done -# python video_prediction/datasets/kth_dataset.py ${TARGET_DIR}/processed ${TARGET_DIR} ${IMAGE_SIZE} -# rm -rf ${TARGET_DIR}/raw -# rm -rf ${TARGET_DIR}/processed - -while [[ $# -gt 0 ]] #of the number of passed argument is greater than 0 -do -key="$1" -case $key in - -d|--data) - DATA="$2" - shift - shift - ;; - -i|--input_dir) - INPUT_DIR="$2" - shift - shift - ;; - -o|--output_dir) - OUTPUT_DIR="$2" - shift - shift - ;; -esac -done - -echo "DATA = ${DATA} " - -echo "OUTPUT_DIRECTORY = ${OUTPUT_DIR}" - -if [ -d $INPUT_DIR ]; then - echo "INPUT DIRECTORY = ${INPUT_DIR}" - -else - echo "INPUT DIRECTORY '$INPUT_DIR' DOES NOT EXIST" - exit 1 -fi - - -if [ $DATA = "era5" ]; then - - mkdir -p ${OUTPUT_DIR} - python video_prediction/datasets/era5_dataset.py $INPUT_DIR ${OUTPUT_DIR} -else - echo "dataset name: '$DATA' (choose from 'era5')" >&2 - exit 1 -fi - -echo "Succesfully finished downloading and preprocessing dataset '$DATA' " \ No newline at end of file