diff --git a/video_prediction_tools/postprocess/statistical_evaluation.py b/video_prediction_tools/postprocess/statistical_evaluation.py
index fcb4d8e93a5ad6fe99c0210632e5f7e38df4f2ce..6756c82c98fefdc2ed01d4abea7d21bd5a53ddcc 100644
--- a/video_prediction_tools/postprocess/statistical_evaluation.py
+++ b/video_prediction_tools/postprocess/statistical_evaluation.py
@@ -15,6 +15,7 @@ try:
     l_tqdm = True
 except:
     l_tqdm = False
+from general_utils import provide_default
 
 # basic data types
 da_or_ds = Union[xr.DataArray, xr.Dataset]
@@ -56,6 +57,13 @@ def calculate_cond_quantiles(data_fcst: xr.DataArray, data_ref: xr.DataArray, fa
         raise ValueError("%{0}: Choose either 'calibration_refinement' or 'likelihood-base_rate' for factorization"
                          .format(method))
 
+    # get and set some basic attributes
+    data_cond_longname = provide_default(data_cond.attr, "longname", "conditioning_variable")
+    data_cond_unit = provide_default(data_cond.attr, "unit", "unknown")
+
+    data_tar_longname = provide_default(data_tar.attr, "longname", "target_variable")
+    data_tar_unit = provide_default(data_cond.attr, "unit", "unknown")
+
     # get bins for conditioning
     data_cond_min, data_cond_max = np.floor(np.min(data_cond)), np.ceil(np.max(data_cond))
     bins = list(np.arange(int(data_cond_min), int(data_cond_max) + 1))
@@ -63,7 +71,9 @@ def calculate_cond_quantiles(data_fcst: xr.DataArray, data_ref: xr.DataArray, fa
     nbins = len(bins) - 1
     # initialize quantile data array
     quantile_panel = xr.DataArray(np.full((nbins, nquantiles), np.nan),
-                                  coords={"bin_center": bins_c, "quantile": quantiles}, dims=["bin_center", "quantile"])
+                                  coords={"bin_center": bins_c, "quantile": quantiles}, dims=["bin_center", "quantile"],
+                                  attrs={"cond_var_name": data_cond_longname, "cond_var_unit": data_cond_unit,
+                                         "tar_var_name": data_tar_longname, "tar_var_unit": data_tar_unit})
     # fill the quantile data array
     for i in np.arange(nbins):
         # conditioning of ground truth based on forecast
@@ -73,6 +83,7 @@ def calculate_cond_quantiles(data_fcst: xr.DataArray, data_ref: xr.DataArray, fa
 
     return quantile_panel, data_cond
 
+
 def avg_metrics(metric: da_or_ds, dim_name: str):
     """
     Averages metric over given dimension