diff --git a/video_prediction/layers/BasicConvLSTMCell.py b/video_prediction/layers/BasicConvLSTMCell.py
new file mode 100644
index 0000000000000000000000000000000000000000..6d8defc2874ba29f177e4512bfea78a5f4298518
--- /dev/null
+++ b/video_prediction/layers/BasicConvLSTMCell.py
@@ -0,0 +1,148 @@
+
+import tensorflow as tf
+from .layer_def import *
+
+class ConvRNNCell(object):
+    """Abstract object representing an Convolutional RNN cell.
+    """
+
+    def __call__(self, inputs, state, scope=None):
+        """Run this RNN cell on inputs, starting from the given state.
+        """
+        raise NotImplementedError("Abstract method")
+
+    @property
+    def state_size(self):
+        """size(s) of state(s) used by this cell.
+        """
+        raise NotImplementedError("Abstract method")
+
+    @property
+    def output_size(self):
+        """Integer or TensorShape: size of outputs produced by this cell."""
+        raise NotImplementedError("Abstract method")
+
+    def zero_state(self,input, dtype):
+        """Return zero-filled state tensor(s).
+        Args:
+          batch_size: int, float, or unit Tensor representing the batch size.
+          dtype: the data type to use for the state.
+        Returns:
+          tensor of shape '[batch_size x shape[0] x shape[1] x num_features]
+          filled with zeros
+        """
+
+        shape = self.shape
+        num_features = self.num_features
+        #x= tf.placeholder(tf.float32, shape=[input.shape[0], shape[0], shape[1], num_features * 2])#Bing: add this to
+        zeros = tf.zeros([tf.shape(input)[0], shape[0], shape[1], num_features * 2])
+        #zeros = tf.zeros_like(x)
+        return zeros
+
+
+class BasicConvLSTMCell(ConvRNNCell):
+    """Basic Conv LSTM recurrent network cell. The
+    """
+
+    def __init__(self, shape, filter_size, num_features, forget_bias=1.0, input_size=None,
+                 state_is_tuple=False, activation=tf.nn.tanh):
+        """Initialize the basic Conv LSTM cell.
+        Args:
+          shape: int tuple thats the height and width of the cell
+          filter_size: int tuple thats the height and width of the filter
+          num_features: int thats the depth of the cell
+          forget_bias: float, The bias added to forget gates (see above).
+          input_size: Deprecated and unused.
+          state_is_tuple: If True, accepted and returned states are 2-tuples of
+            the `c_state` and `m_state`.  If False, they are concatenated
+            along the column axis.  The latter behavior will soon be deprecated.
+          activation: Activation function of the inner states.
+        """
+        # if not state_is_tuple:
+        # logging.warn("%s: Using a concatenated state is slower and will soon be "
+        #             "deprecated.  Use state_is_tuple=True.", self)
+        if input_size is not None:
+            logging.warn("%s: The input_size parameter is deprecated.", self)
+        self.shape = shape
+        self.filter_size = filter_size
+        self.num_features = num_features
+        self._forget_bias = forget_bias
+        self._state_is_tuple = state_is_tuple
+        self._activation = activation
+
+    @property
+    def state_size(self):
+        return (LSTMStateTuple(self._num_units, self._num_units)
+                if self._state_is_tuple else 2 * self._num_units)
+
+    @property
+    def output_size(self):
+        return self._num_units
+
+    def __call__(self, inputs, state, scope=None):
+        """Long short-term memory cell (LSTM)."""
+        with tf.variable_scope(scope or type(self).__name__):  # "BasicLSTMCell"
+            # Parameters of gates are concatenated into one multiply for efficiency.
+            if self._state_is_tuple:
+                c, h = state
+            else:
+                c, h = tf.split(axis = 3, num_or_size_splits = 2, value = state)
+            concat = _conv_linear([inputs, h], self.filter_size, self.num_features * 4, True)
+
+            # i = input_gate, j = new_input, f = forget_gate, o = output_gate
+            i, j, f, o = tf.split(axis = 3, num_or_size_splits = 4, value = concat)
+
+            new_c = (c * tf.nn.sigmoid(f + self._forget_bias) + tf.nn.sigmoid(i) *
+                     self._activation(j))
+            new_h = self._activation(new_c) * tf.nn.sigmoid(o)
+
+            if self._state_is_tuple:
+                new_state = LSTMStateTuple(new_c, new_h)
+            else:
+                new_state = tf.concat(axis = 3, values = [new_c, new_h])
+            return new_h, new_state
+
+
+def _conv_linear(args, filter_size, num_features, bias, bias_start=0.0, scope=None):
+    """convolution:
+    Args:
+      args: a 4D Tensor or a list of 4D, batch x n, Tensors.
+      filter_size: int tuple of filter height and width.
+      num_features: int, number of features.
+      bias_start: starting value to initialize the bias; 0 by default.
+      scope: VariableScope for the created subgraph; defaults to "Linear".
+    Returns:
+      A 4D Tensor with shape [batch h w num_features]
+    Raises:
+      ValueError: if some of the arguments has unspecified or wrong shape.
+    """
+
+    # Calculate the total size of arguments on dimension 1.
+    total_arg_size_depth = 0
+    shapes = [a.get_shape().as_list() for a in args]
+    for shape in shapes:
+        if len(shape) != 4:
+            raise ValueError("Linear is expecting 4D arguments: %s" % str(shapes))
+        if not shape[3]:
+            raise ValueError("Linear expects shape[4] of arguments: %s" % str(shapes))
+        else:
+            total_arg_size_depth += shape[3]
+
+    dtype = [a.dtype for a in args][0]
+
+    # Now the computation.
+    with tf.variable_scope(scope or "Conv"):
+        matrix = tf.get_variable(
+            "Matrix", [filter_size[0], filter_size[1], total_arg_size_depth, num_features], dtype = dtype)
+        if len(args) == 1:
+            res = tf.nn.conv2d(args[0], matrix, strides = [1, 1, 1, 1], padding = 'SAME')
+        else:
+            res = tf.nn.conv2d(tf.concat(axis = 3, values = args), matrix, strides = [1, 1, 1, 1], padding = 'SAME')
+        if not bias:
+            return res
+        bias_term = tf.get_variable(
+            "Bias", [num_features],
+            dtype = dtype,
+            initializer = tf.constant_initializer(
+                bias_start, dtype = dtype))
+    return res + bias_term
diff --git a/video_prediction/models/vanilla_convLSTM_model.py b/video_prediction/models/vanilla_convLSTM_model.py
new file mode 100644
index 0000000000000000000000000000000000000000..de4a05dc1d7720e2bc5259fcdc90d1748a46ddd1
--- /dev/null
+++ b/video_prediction/models/vanilla_convLSTM_model.py
@@ -0,0 +1,158 @@
+import collections
+import functools
+import itertools
+from collections import OrderedDict
+import numpy as np
+import tensorflow as tf
+from tensorflow.python.util import nest
+from video_prediction import ops, flow_ops
+from video_prediction.models import BaseVideoPredictionModel
+from video_prediction.models import networks
+from video_prediction.ops import dense, pad2d, conv2d, flatten, tile_concat
+from video_prediction.rnn_ops import BasicConv2DLSTMCell, Conv2DGRUCell
+from video_prediction.utils import tf_utils
+from datetime import datetime
+from pathlib import Path
+from video_prediction.layers import layer_def as ld
+from video_prediction.layers import BasicConvLSTMCell
+
+class VanillaVAEVideoPredictionModel(BaseVideoPredictionModel):
+    def __init__(self, mode='train', hparams_dict=None,
+                 hparams=None, **kwargs):
+        super(VanillaVAEVideoPredictionModel, self).__init__(mode, hparams_dict, hparams, **kwargs)
+        self.mode = mode
+        self.hparams = hparams
+        self.learning_rate = self.hparams.lr
+        self.gen_images_enc = None
+        self.recon_loss = None
+        self.latent_loss = None
+        self.total_loss = None
+        self.context_frames = 10
+        self.sequence_length = 20
+        self.predict_frames = self.sequence_length - self.context_frames
+
+    def get_default_hparams_dict(self):
+        """
+        The keys of this dict define valid hyperparameters for instances of
+        this class. A class inheriting from this one should override this
+        method if it has a different set of hyperparameters.
+
+        Returns:
+            A dict with the following hyperparameters.
+
+            batch_size: batch size for training.
+            lr: learning rate. if decay steps is non-zero, this is the
+                learning rate for steps <= decay_step.
+            end_lr: learning rate for steps >= end_decay_step if decay_steps
+                is non-zero, ignored otherwise.
+            decay_steps: (decay_step, end_decay_step) tuple.
+            max_steps: number of training steps.
+            beta1: momentum term of Adam.
+            beta2: momentum term of Adam.
+            context_frames: the number of ground-truth frames to pass in at
+                start. Must be specified during instantiation.
+            sequence_length: the number of frames in the video sequence,
+                including the context frames, so this model predicts
+                `sequence_length - context_frames` future frames. Must be
+                specified during instantiation.
+        """
+        default_hparams = super(VanillaVAEVideoPredictionModel, self).get_default_hparams_dict()
+        hparams = dict(
+            batch_size=16,
+            lr=0.001,
+            end_lr=0.0,
+            decay_steps=(200000, 300000),
+            max_steps=350000,
+        )
+        return dict(itertools.chain(default_hparams.items(), hparams.items()))
+
+    def build_graph(self, x):
+        global_step = tf.train.get_or_create_global_step()
+        original_global_variables = tf.global_variables()
+        tf.reset_default_graph()
+        self.global_step = tf.Variable(0, name = 'global_step', trainable = False)
+        self.increment_global_step = tf.assign_add(self.global_step, 1, name = 'increment_global_step')
+
+        # ARCHITECTURE
+        self.x_hat_context_frames, self.x_hat_predict_frames = self.convLSTM_network()
+        self.x_hat = tf.concat([self.x_hat_context_frames, self.x_hat_predict_frames], 1)
+        print("x_hat,shape", self.x_hat)
+
+        self.context_frames_loss = tf.reduce_mean(
+            tf.square(self.x[:, :self.context_frames, :, :, 0] - self.x_hat_context_frames[:, :, :, :, 0]))
+        self.predict_frames_loss = tf.reduce_mean(
+            tf.square(self.x[:, self.context_frames:, :, :, 0] - self.x_hat_predict_frames[:, :, :, :, 0]))
+        self.total_loss = self.context_frames_loss + self.predict_frames_loss
+
+        self.train_op = tf.train.AdamOptimizer(
+            learning_rate = self.learning_rate).minimize(self.total_loss, global_step = self.global_step)
+
+        # Summary op
+        self.loss_summary = tf.summary.scalar("recon_loss", self.context_frames_loss)
+        self.loss_summary = tf.summary.scalar("latent_loss", self.predict_frames_loss)
+        self.loss_summary = tf.summary.scalar("total_loss", self.total_loss)
+        self.summary_op = tf.summary.merge_all()
+        global_variables = [var for var in tf.global_variables() if var not in original_global_variables]
+        self.saveable_variables = [global_step] + global_variables
+        return
+
+
+    @staticmethod
+    def convLSTM_cell(inputs, hidden, nz=16):
+        print("Inputs shape", inputs.shape)
+        conv1 = ld.conv_layer(inputs, 3, 2, 8, "encode_1", activate = "leaky_relu")
+        print("Encode_1_shape", conv1.shape)
+        conv2 = ld.conv_layer(conv1, 3, 1, 8, "encode_2", activate = "leaky_relu")
+        print("Encode 2_shape,", conv2.shape)
+        conv3 = ld.conv_layer(conv2, 3, 2, 8, "encode_3", activate = "leaky_relu")
+        print("Encode 3_shape, ", conv3.shape)
+        y_0 = conv3
+        # conv lstm cell
+        with tf.variable_scope('conv_lstm', initializer = tf.random_uniform_initializer(-.01, 0.1)):
+            cell = BasicConvLSTMCell(shape = [16, 16], filter_size = [3, 3], num_features = 8)
+            if hidden is None:
+                hidden = cell.zero_state(y_0, tf.float32)
+                print("hidden zero layer", hidden.shape)
+            output, hidden = cell(y_0, hidden)
+            print("output for cell:", output)
+
+        output_shape = output.get_shape().as_list()
+        print("output_shape,", output_shape)
+
+        z3 = tf.reshape(output, [-1, output_shape[1], output_shape[2], output_shape[3]])
+
+        conv5 = ld.transpose_conv_layer(z3, 3, 2, 8, "decode_5", activate = "leaky_relu")
+        print("conv5 shape", conv5)
+
+        conv6 = ld.transpose_conv_layer(conv5, 3, 1, 8, "decode_6", activate = "leaky_relu")
+        print("conv6 shape", conv6)
+
+        x_hat = ld.transpose_conv_layer(conv6, 3, 2, 3, "decode_7", activate = "sigmoid")  # set activation to linear
+        print("x hat shape", x_hat)
+        return x_hat, hidden
+
+    def convLSTM_network(self):
+        network_template = tf.make_template('network',
+                                            convLSTM.convLSTM_cell)  # make the template to share the variables
+        # create network
+        x_hat_context = []
+        x_hat_predict = []
+        seq_start = 1
+        hidden = None
+        for i in range(self.context_frames):
+            if i < seq_start:
+                x_1, hidden = network_template(self.x[:, i, :, :, :], hidden)
+            else:
+                x_1, hidden = network_template(x_1, hidden)
+            x_hat_context.append(x_1)
+
+        for i in range(self.predict_frames):
+            x_1, hidden = network_template(x_1, hidden)
+            x_hat_predict.append(x_1)
+
+        # pack them all together
+        x_hat_context = tf.stack(x_hat_context)
+        x_hat_predict = tf.stack(x_hat_predict)
+        self.x_hat_context = tf.transpose(x_hat_context, [1, 0, 2, 3, 4])  # change first dim with sec dim
+        self.x_hat_predict = tf.transpose(x_hat_predict, [1, 0, 2, 3, 4])  # change first dim with sec dim
+        return self.x_hat_context, self.x_hat_predict
\ No newline at end of file