diff --git a/video_prediction_tools/HPC_scripts/visualize_postprocess_era5_template.sh b/video_prediction_tools/HPC_scripts/visualize_postprocess_era5_template.sh index 4702ec5b074c810a5edf9141d2e74e98cc91d93c..b2531f5644891a3144134f8fc4632d926b943c92 100644 --- a/video_prediction_tools/HPC_scripts/visualize_postprocess_era5_template.sh +++ b/video_prediction_tools/HPC_scripts/visualize_postprocess_era5_template.sh @@ -35,16 +35,15 @@ if [ -z ${VIRTUAL_ENV} ]; then fi # declare directory-variables which will be modified appropriately during Preprocessing (invoked by mpi_split_data_multi_years.py) -source_dir=/p/scratch/deepacf/video_prediction_shared_folder/preprocessedData/ -checkpoint_dir=/p/scratch/deepacf/video_prediction_shared_folder/models/ -results_dir=/p/scratch/deepacf/video_prediction_shared_folder/results/ +source_dir=/p/project/deepacf/deeprain/video_prediction_shared_folder/preprocessedData/ +checkpoint_dir=/p/project/deepacf/deeprain/video_prediction_shared_folder/models/ +results_dir=/p/project/deepacf/deeprain/video_prediction_shared_folder/results/ # name of model model=convLSTM - +exp=[specify experiment name] # run postprocessing/generation of model results including evaluation metrics srun python -u ../main_scripts/main_visualize_postprocess.py \ ---input_dir ${source_dir}/tfrecords --dataset_hparams sequence_length=20 --checkpoint ${checkpoint_dir}/ \ ---mode test --model ${model} --results_dir ${results_dir}/ --batch_size 2 --dataset era5 > generate_era5-out.out +--input_dir ${source_dir} --dataset_hparams sequence_length=20 --checkpoint ${checkpoint_dir}/${model}/${exp} \ +--mode test --model ${model} --results_dir ${results_dir}/${model}/${exp}/ --batch_size 2 --dataset era5 > generate_era5-out.out -#srun python scripts/train.py --input_dir data/era5 --dataset era5 --model savp --model_hparams_dict hparams/kth/ours_savp/model_hparams.json --output_dir logs/era5/ours_savp