diff --git a/README.md b/README.md index f3a9877e31f3c93134b5a7f52fad62c660cc1aa7..a9cc39b02f4640ae413e22f4c3b184d2a2104f83 100644 --- a/README.md +++ b/README.md @@ -34,8 +34,8 @@ pip install -r requirements.txt - Set up env and install packages ```bash -cd env_setup -./create_env.sh <USER_FOLDER> +./env_setup/create_env.sh <user> <env_name> +source <env_name>/bin/activate ``` ## Workflow by steps @@ -68,24 +68,25 @@ python video_prediction/datasets/era5_dataset_v2.py /p/scratch/deepacf/bing/prep ### Trarining ```python -python scripts/train_v2.py --input_dir <./data/exp_name> --dataset era5 --model <savp> --model_hparams_dict hparams/kth/ours_savp/model_hparams.json --output_dir <./logs/{exp_name}/{mode}/> +python3 scripts/train_v2.py --input_dir <./data/exp_name> --dataset era5 --model <savp> --model_hparams_dict hparams/kth/ours_savp/model_hparams.json --output_dir <./logs/{exp_name}/{mode}/> ``` Example ```python -python scripts/train_v2.py --input_dir ./data/era5_64_64_3_3t_norm --dataset era5 --model savp --model_hparams_dict hparams/kth/ours_savp/model_hparams.json --output_dir logs/era5_64_64_3_3t_norm/end_to_end +python3 scripts/train_v2.py --input_dir ./data/era5_64_64_3_3t_norm --dataset era5 --model savp --model_hparams_dict hparams/kth/ours_savp/model_hparams.json --output_dir logs/era5_64_64_3_3t_norm/end_to_end ``` ### Postprocessing Generating prediction frames, model evaluation, and visulization +You can trained your own model from the training step , or you can copy the Bing's trained model ```python -python scripts/generate_transfer_learning_finetune.py --input_dir <./data/exp_name> --dataset_hparams sequence_length=20 --checkpoint <./logs/{exp_name}/{mode}/{model}> --mode test --results_dir <./results/{exp_name}/{mode}> --batch_size <batch_size> --dataset era5 +python3 scripts/generate_transfer_learning_finetune.py --input_dir <./data/exp_name> --dataset_hparams sequence_length=20 --checkpoint <./logs/{exp_name}/{mode}/{model}> --mode test --results_dir <./results/{exp_name}/{mode}> --batch_size <batch_size> --dataset era5 ``` - +- example: use end_to_end training model from bing for exp_name:era5_size_64_64_3_3t_norm ```python -python3 scripts/generate_transfer_learning_finetune.py --input_dir data/era5_size_64_64_3_3t_norm --dataset_hparams sequence_length=20 --checkpoint logs/era5_size_64_64_3_3t_norm/end_to_end/ours_savp --mode test --results_dir results_test_samples/era5_size_64_64_3_3t_norm/end_to_end --batch_size 4 --dataset era5 +python3 scripts/generate_transfer_learning_finetune.py --input_dir data/era5_size_64_64_3_3t_norm --dataset_hparams sequence_length=20 --checkpoint /p/project/deepacf/deeprain/bing/video_prediction_savp/logs/era5_size_64_64_3_3t_norm/end_to_end/ours_savp --mode test --results_dir results_test_samples/era5_size_64_64_3_3t_norm/end_to_end --batch_size 4 --dataset era5 ``` 