diff --git a/test/test_visualize_postprocess.py b/test/test_visualize_postprocess.py index 288dad25cfe86b4c8ce03ea418f79bf76851bfeb..92191c26e5565f9ff99b7ed29c07631d09431c85 100644 --- a/test/test_visualize_postprocess.py +++ b/test/test_visualize_postprocess.py @@ -59,9 +59,9 @@ def test_run_deterministic(vis_case1): vis_case1.init_session() vis_case1.restore(vis_case1.sess,vis_case1.checkpoint) vis_case1.sample_ind = 0 - vis_case1.input_results,vis_case1.input_images_denorm_all, vis_case1.t_starts = vis_case1.get_input_data_per_batch(vis_case1.inputs) - assert len(vis_case1.t_starts) == batch_size - ts_1 = vis_case1.t_starts[0][0] + input_results,input_images_denorm_all,t_starts = vis_case1.get_input_data_per_batch(vis_case1.inputs) + assert len(t_starts) == batch_size + ts_1 = t_starts[0][0] year = str(ts_1)[:4] month = str(ts_1)[4:6] filename = "ecmwf_era5_" + str(ts_1)[2:] + ".nc" @@ -72,36 +72,42 @@ def test_run_deterministic(vis_case1): t2_var = np.array(t2_var) t2_max = np.max(t2_var[117:173,0:92]) t2_min = np.min(t2_var[117:173,0:92]) - input_image = np.array(vis_case1.input_images_denorm_all)[0,0,:,:,0] #get the first batch id and 1st sequence image + input_image = np.array(input_images_denorm_all)[0,0,:,:,0] #get the first batch id and 1st sequence image input_img_max = np.max(input_image) input_img_min = np.min(input_image) print("input_image",input_image[0,:10]) assert t2_max == input_img_max assert t2_min == input_img_min - - feed_dict = {input_ph: vis_case1.input_results[name] for name, input_ph in vis_case1.inputs.items()} + sample_ind = 0 + feed_dict = {input_ph: input_results[name] for name, input_ph in vis_case1.inputs.items()} gen_images = vis_case1.sess.run(vis_case1.video_model.outputs['gen_images'], feed_dict=feed_dict) - + gen_images_denorm = vis_case1.denorm_images_all_channels(gen_images, vis_case1.vars_in, vis_case1.norm_cls, + norm_method="minmax") ############Test persistenct value############# - vis_case1.ts = Postprocess.generate_seq_timestamps(vis_case1.t_starts[0], len_seq=vis_case1.sequence_length) - vis_case1.get_and_plot_persistent_per_sample(sample_id=0) - ts_1_per = (datetime.datetime.strptime(str(ts_1), '%Y%m%d%H') - datetime.timedelta(hours=23)).strftime("%Y%m%d%H") + times_0, init_times = vis_case1.get_init_time(t_starts) + batch_ds = vis_case1.create_dataset(input_images_denorm_all, gen_images_denorm, init_times) + nbs = np.minimum(vis_case1.batch_size, vis_case1.num_samples_per_epoch - sample_ind) + times_seq = (pd.date_range(times_0[0], periods=int(vis_case1.sequence_length), freq="h")).to_pydatetime() + persistence_seq, _ = Postprocess.get_persistence(times_seq, vis_case1.input_dir_pkl) + ts_1_per = (pd.to_datetime(times_0[0]) - datetime.timedelta(hours=23)).strftime("%Y%m%d%H") + year_per = str(ts_1_per)[:4] month_per = str(ts_1_per)[4:6] filename_per = "ecmwf_era5_" + str(ts_1_per)[2:] + ".nc" - fl_per = os.path.join("/p/project/deepacf/deeprain/video_prediction_shared_folder/extractedData",year_per,month_per,filename_per) + + fl_per = os.path.join("/p/scratch/deepacf/deeprain/ambs_era5/extractedData",year_per,month_per,filename_per) with Dataset(fl_per,"r") as data_file: t2_var_per = data_file.variables["2t"][0,117:173,0:92] t2_per_var = np.array(t2_var_per) t2_per_max = np.max(t2_per_var) - per_image_max = np.max(vis_case1.persistence_images[0]) + per_image_max = np.max(persistence_seq[0]) assert t2_per_max == per_image_max -def test_run_determinstic_quantile_plot(vis_case1): - vis_case1.init_metric_ds() +#def test_run_determinstic_quantile_plot(vis_case1): +# vis_case1.init_metric_ds()