diff --git a/video_prediction_tools/main_scripts/main_visualize_postprocess.py b/video_prediction_tools/main_scripts/main_visualize_postprocess.py
index 4cd800f880b927b84ac8d7a0a929c78bac777a94..774f07650703a6e67bc6adc1df0527e673dc0a37 100644
--- a/video_prediction_tools/main_scripts/main_visualize_postprocess.py
+++ b/video_prediction_tools/main_scripts/main_visualize_postprocess.py
@@ -30,10 +30,12 @@ from postprocess_plotting import plot_avg_eval_metrics, plot_cond_quantile, crea
 
 
 class Postprocess(TrainModel):
-    def __init__(self, results_dir: str = None, checkpoint: str= None, mode: str = "test", batch_size: int = None,
+    def __init__(self, results_dir: str = None, checkpoint: str = None, mode: str = "test", batch_size: int = None,
                  num_stochastic_samples: int = 1, stochastic_plot_id: int = 0, gpu_mem_frac: float = None,
                  seed: int = None, channel: int = 0, args=None, run_mode: str = "deterministic",
-                 eval_metrics: List = ("mse", "psnr", "ssim","acc"), clim_path: str ="/p/scratch/deepacf/video_prediction_shared_folder/preprocessedData/T2monthly"):
+                 eval_metrics: List = ("mse", "psnr", "ssim", "acc"),
+                 clim_path: str = "/p/scratch/deepacf/video_prediction_shared_folder/preprocessedData/T2monthly",
+                 lquick: bool = None):
         """
         Initialization of the class instance for postprocessing (generation of forecasts from trained model +
         basic evauation).
@@ -50,7 +52,8 @@ class Postprocess(TrainModel):
         :param args: namespace of parsed arguments
         :param run_mode: "deterministic" or "stochastic", default: "deterministic", "stochastic is not supported yet!!!
         :param eval_metrics: metrics used to evaluate the trained model
-        :param clim_path:  the path to the climatology nc file
+        :param clim_path:  the path to the netCDF-file storing climatolgical data
+        :param lquick: flag for quick evaluation
         """
         # copy over attributes from parsed argument
         self.results_dir = self.output_dir = os.path.normpath(results_dir)
@@ -68,6 +71,7 @@ class Postprocess(TrainModel):
         self.run_mode = run_mode
         self.mode = mode
         self.channel = channel
+        self.lquick = lquick
         # Attributes set during runtime
         self.norm_cls = None
         # configuration of basic evaluation
@@ -82,7 +86,7 @@ class Postprocess(TrainModel):
         self.model_hparams_dict_load = self.get_model_hparams_dict()
         # set input paths and forecast product dictionary
         self.input_dir, self.input_dir_pkl = self.get_input_dirs()
-        self.fcst_products = {"persistence": "pfcst", self.model: "mfcst"}
+        self.fcst_products = {self.model: "mfcst"} if lquick else {"persistence": "pfcst", self.model: "mfcst"}
         # correct number of stochastic samples if necessary
         self.check_num_stochastic_samples()
         # get metadata
@@ -102,8 +106,8 @@ class Postprocess(TrainModel):
         self.setup_model(mode=self.mode)
         self.setup_graph()
         self.setup_gpu_config()
-        self.load_climdata()
-
+        if "acc" in eval_metrics:
+            self.load_climdata()
 
     # Methods that are called during initialization
     def get_input_dirs(self):
@@ -551,21 +555,24 @@ class Postprocess(TrainModel):
                 
                 if os.path.exists(nc_fname):
                     print("%{0}: The file '{1}' already exists and is therefore skipped".format(method, nc_fname))
-                else:
+                elif not self.lquick:
                     self.save_ds_to_netcdf(batch_ds.isel(init_time=i), nc_fname)
+                else:
+                    pass
 
                 # end of batch-loop
             # write evaluation metric to corresponding dataset and sa
             eval_metric_ds = self.populate_eval_metric_ds(eval_metric_ds, batch_ds, sample_ind,
                                                           self.vars_in[self.channel])
-            cond_quantiple_ds = Postprocess.append_ds(batch_ds, cond_quantiple_ds, self.cond_quantile_vars, "init_time",dtype=np.float16)
+            if not self.lquick:             # conditional quantiles are not evaluated for quick evaluation
+                cond_quantiple_ds = Postprocess.append_ds(batch_ds, cond_quantiple_ds, self.cond_quantile_vars,
+                                                          "init_time", dtype=np.float16)
             # ... and increment sample_ind
             sample_ind += self.batch_size
             # end of while-loop for samples
         # safe dataset with evaluation metrics for later use
         self.eval_metrics_ds = eval_metric_ds
         self.cond_quantiple_ds = cond_quantiple_ds
-        #self.add_ensemble_dim()
 
     # all methods of the run factory
     def init_session(self):
@@ -1207,19 +1214,21 @@ class Postprocess(TrainModel):
 def main():
     parser = argparse.ArgumentParser()
     parser.add_argument("--results_dir", type=str, default='results',
-                        help="ignored if output_gif_dir is specified")
-    parser.add_argument("--checkpoint",
-                        help="directory with checkpoint or checkpoint name (e.g. checkpoint_dir/model-200000)")
+                        help="Directory to save the results")
+    parser.add_argument("--checkpoint", help="Directory with checkpoint or checkpoint name (e.g. ${dir}/model-2000)")
     parser.add_argument("--mode", type=str, choices=['train', 'val', 'test'], default='test',
                         help='mode for dataset, val or test.')
     parser.add_argument("--batch_size", type=int, default=8, help="number of samples in batch")
     parser.add_argument("--num_stochastic_samples", type=int, default=1)
     parser.add_argument("--gpu_mem_frac", type=float, default=0.95, help="fraction of gpu memory to use")
     parser.add_argument("--seed", type=int, default=7)
-    parser.add_argument("--evaluation_metrics", "-eval_metrics", dest="eval_metrics", nargs="+", default=("mse", "psnr", "ssim","acc"),
+    parser.add_argument("--evaluation_metrics", "-eval_metrics", dest="eval_metrics", nargs="+",
+                        default=("mse", "psnr", "ssim", "acc"),
                         help="Metrics to be evaluate the trained model. Must be known metrics, see Scores-class.")
     parser.add_argument("--channel", "-channel", dest="channel", type=int, default=0,
                         help="Channel which is used for evaluation.")
+    parser.add_argument("--lquick_evaluation", "-lquick", dest="lquick", default=False, action="store_true",
+                        help="Flag if (reduced) quick evaluation based on MSE is performed.")
     args = parser.parse_args()
 
     print('----------------------------------- Options ------------------------------------')
@@ -1227,16 +1236,25 @@ def main():
         print(k, "=", v)
     print('------------------------------------- End --------------------------------------')
 
+    eval_metrics = args.eval_metrics
+    results_dir = args.results_dir
+    if args.lquick:      # in case of quick evaluation, onyl evaluate MSE and modify results_dir
+        eval_metrics = ["mse"]
+        if not os.path.isfile(args.checkpoint):
+            raise ValueError("Pass a specific checkpoint-file for quick evaluation.")
+        results_dir = args.results_dir + "_{0}".format(os.path.basename(args.checkpoint))
+
     # initialize postprocessing instance
-    postproc_instance = Postprocess(results_dir=args.results_dir, checkpoint=args.checkpoint, mode="test",
+    postproc_instance = Postprocess(results_dir=results_dir, checkpoint=args.checkpoint, mode="test",
                                     batch_size=args.batch_size, num_stochastic_samples=args.num_stochastic_samples,
                                     gpu_mem_frac=args.gpu_mem_frac, seed=args.seed, args=args,
-                                    eval_metrics=args.eval_metrics, channel=args.channel)
+                                    eval_metrics=eval_metrics, channel=args.channel, lquick=args.lquick)
     # run the postprocessing
     postproc_instance.run()
     postproc_instance.handle_eval_metrics()
-    postproc_instance.plot_example_forecasts(metric=args.eval_metrics[0], channel=args.channel)
-    postproc_instance.plot_conditional_quantiles()
+    if not args.lquick:    # don't produce additional plots in case of quick evaluation
+        postproc_instance.plot_example_forecasts(metric=args.eval_metrics[0], channel=args.channel)
+        postproc_instance.plot_conditional_quantiles()
 
 
 if __name__ == '__main__':