diff --git a/video_prediction_savp/HPC_scripts/DataPreprocess_to_tf.sh b/video_prediction_savp/HPC_scripts/DataPreprocess_to_tf.sh
index 83b61e6fbbfc1ef34f6421ef130be71384ffa47a..c78a0e478fa9fa7738e64dc5a2bca8cad0afb0dd 100755
--- a/video_prediction_savp/HPC_scripts/DataPreprocess_to_tf.sh
+++ b/video_prediction_savp/HPC_scripts/DataPreprocess_to_tf.sh
@@ -29,8 +29,8 @@ if [ -z ${VIRTUAL_ENV} ]; then
 fi
 
 # declare directory-variables which will be modified appropriately during Preprocessing (invoked by mpi_split_data_multi_years.py)
-source_dir=/p/project/deepacf/deeprain/video_prediction_shared_folder/preprocessedData/era5-Y2015to2017M01to12-160x128-2970N1500W-T2_MSL_gph500
-destination_dir=/p/project/deepacf/deeprain/video_prediction_shared_folder/preprocessedData/era5-Y2015to2017M01to12-160x128-2970N1500W-T2_MSL_gph500
+source_dir=/p/project/deepacf/deeprain/video_prediction_shared_folder/preprocessedData/scarlet_era5-Y2017_testM01to12-160x128-2970N1500W-T2_MSL_gph500
+destination_dir=/p/project/deepacf/deeprain/video_prediction_shared_folder/preprocessedData/bing_era5-Y2017_testM01to12-160x128-2970N1500W-T2_MSL_gph500
 
 # run Preprocessing (step 2 where Tf-records are generated)
 srun python ../video_prediction/datasets/era5_dataset_v2.py ${source_dir}/hickle ${destination_dir}/tfrecords -vars T2 MSL gph500 -height 128 -width 160 -seq_length 20 
diff --git a/video_prediction_savp/HPC_scripts/train_era5.sh b/video_prediction_savp/HPC_scripts/train_era5.sh
index f68b590767e07354ea891c968a06b9ddf616a045..e44c970e80b0f60eb1727a19b04201e27b82bd65 100755
--- a/video_prediction_savp/HPC_scripts/train_era5.sh
+++ b/video_prediction_savp/HPC_scripts/train_era5.sh
@@ -34,9 +34,8 @@ fi
 
 
 # declare directory-variables which will be modified appropriately during Preprocessing (invoked by mpi_split_data_multi_years.py)
-source_dir=/p/project/deepacf/deeprain/video_prediction_shared_folder/preprocessedData/era5-Y2015to2017M01to12-160x128-2970N1500W-T2_MSL_gph500
-destination_dir=/p/project/deepacf/deeprain/video_prediction_shared_folder/results/era5-Y2015to2017M01to12-160x128-2970N1500W-T2_MSL_gph500
-
+source_dir=/p/project/deepacf/deeprain/video_prediction_shared_folder/preprocessedData/scarlet_era5-Y2017_testM01to12-160x128-2970N1500W-T2_MSL_gph500
+destination_dir=/p/project/deepacf/deeprain/video_prediction_shared_folder/models/bing_era5-Y2017_testM01to12-160x128-2970N1500W-T2_MSL_gph500
 # for choosing the model
 model=convLSTM
 model_hparams=../hparams/era5/${model}/model_hparams.json
diff --git a/video_prediction_savp/env_setup/modules_train.sh b/video_prediction_savp/env_setup/modules_train.sh
index 0510dd830f1adc207255951b9e57b5288edcc93b..b5485122b058efe834c8dd4fd348b9a56d7d0a5f 100755
--- a/video_prediction_savp/env_setup/modules_train.sh
+++ b/video_prediction_savp/env_setup/modules_train.sh
@@ -21,4 +21,4 @@ module load mpi4py/3.0.1-Python-3.6.8
 module load h5py/2.9.0-serial-Python-3.6.8
 module load TensorFlow/1.13.1-GPU-Python-3.6.8
 module load cuDNN/7.5.1.10-CUDA-10.1.105
-
+module load netcdf4-python/1.5.0.1-Python-3.6.8
diff --git a/video_prediction_savp/hparams/era5/convLSTM/model_hparams.json b/video_prediction_savp/hparams/era5/convLSTM/model_hparams.json
index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..b974eff55d650d75978ad3676535e4bb5d8a2911 100644
--- a/video_prediction_savp/hparams/era5/convLSTM/model_hparams.json
+++ b/video_prediction_savp/hparams/era5/convLSTM/model_hparams.json
@@ -0,0 +1,11 @@
+
+{
+    "batch_size": 10,
+    "lr": 0.001,
+    "max_epochs":2,
+    "context_frames":10,
+    "sequence_length":20
+
+}
+
+
diff --git a/video_prediction_savp/video_prediction/datasets/era5_dataset_v2.py b/video_prediction_savp/video_prediction/datasets/era5_dataset_v2.py
index 4b3376e629f372c569e008f528d01fed6e372b15..9a93ed2166621d6325668538baae05b7f2579763 100644
--- a/video_prediction_savp/video_prediction/datasets/era5_dataset_v2.py
+++ b/video_prediction_savp/video_prediction/datasets/era5_dataset_v2.py
@@ -61,7 +61,6 @@ class ERA5Dataset_v2(VarLenFeatureVideoDataset):
         sequence_lengths = [int(sequence_length.strip()) for sequence_length in sequence_lengths]
         return np.sum(np.array(sequence_lengths) >= self.hparams.sequence_length)
 
-
     def filter(self, serialized_example):
         return tf.convert_to_tensor(True)
 
@@ -143,7 +142,7 @@ def _bytes_list_feature(values):
     return tf.train.Feature(bytes_list=tf.train.BytesList(value=values))
 
 def _floats_feature(value):
-  return tf.train.Feature(float_list=tf.train.FloatList(value=value))
+    return tf.train.Feature(float_list=tf.train.FloatList(value=value))
 
 def _int64_feature(value):
     return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))
@@ -325,7 +324,7 @@ def read_frames_and_save_tf_records(stats,output_dir,input_file,vars_in,year,mon
     #sequence_lengths_file.close()
     return 
 
-def write_sequence_file(output_dir,seq_length):
+def write_sequence_file(output_dir,seq_length,sequences_per_file):
     
     partition_names = ["train","val","test"]
     for partition_name in partition_names:
@@ -333,7 +332,7 @@ def write_sequence_file(output_dir,seq_length):
         tfCounter = len(glob.glob1(save_output_dir,"*.tfrecords"))
         print("Partition_name: {}, number of tfrecords: {}".format(partition_name,tfCounter))
         sequence_lengths_file = open(os.path.join(save_output_dir, 'sequence_lengths.txt'), 'w')
-        for i in range(tfCounter):
+        for i in range(tfCounter*sequences_per_file):
             sequence_lengths_file.write("%d\n" % seq_length)
         sequence_lengths_file.close()
     
@@ -349,6 +348,7 @@ def main():
     parser.add_argument("-height",type=int,default=64)
     parser.add_argument("-width",type = int,default=64)
     parser.add_argument("-seq_length",type=int,default=20)
+    parser.add_argument("-sequences_per_file",type=int,default=2)
     args = parser.parse_args()
     current_path = os.getcwd()
     #input_dir = "/Users/gongbing/PycharmProjects/video_prediction/splits"
@@ -405,7 +405,7 @@ def main():
             message_counter = message_counter + 1 
             print("Message in from slaver",message_in) 
             
-        write_sequence_file(args.output_dir,args.seq_length)
+        write_sequence_file(args.output_dir,args.seq_length,args.sequences_per_file)
         
         #write_sequence_file   
     else:
@@ -421,7 +421,7 @@ def main():
                input_file = "X_" + '{0:02}'.format(my_rank) + ".pkl"
                input_dir = os.path.join(args.input_dir,year)
                input_file = os.path.join(input_dir,input_file)
-               #read_frames_and_save_tf_records(year=year,month=my_rank,stats=stats,output_dir=save_output_dir,input_file=input_file,vars_in=args.variables,partition_name=partition_name, seq_length=args.seq_length,height=args.height,width=args.width,sequences_per_file=2)        
+               read_frames_and_save_tf_records(year=year,month=my_rank,stats=stats,output_dir=save_output_dir,input_file=input_file,vars_in=args.variables,partition_name=partition_name, seq_length=args.seq_length,height=args.height,width=args.width,sequences_per_file=args.sequences_per_file)        
             print("Year {} finished",year)
         message_out = ("Node:",str(my_rank),"finished","","\r\n")
         print ("Message out for slaves:",message_out)