diff --git a/video_prediction_tools/data_preprocess/preprocess_data_step2.py b/video_prediction_tools/data_preprocess/preprocess_data_step2.py index bfd8c16b46fd199be24ee54c01a2fa484ad45fae..1494d220904583d8d3e180f82d5f1b214f5b86f0 100644 --- a/video_prediction_tools/data_preprocess/preprocess_data_step2.py +++ b/video_prediction_tools/data_preprocess/preprocess_data_step2.py @@ -93,7 +93,7 @@ class ERA5Pkl2Tfrecords(ERA5Dataset): def get_metadata(self): """ - This function get the meta data that generared from data_process_step1, we aim to extract the height and width informaion from it + This function gets the meta data that generared from data_process_step1, we aim to extract the height and width informaion from it vars_in : list(str), must be consistent with the list from DataPreprocessing_step1 height : int, the height of the image width : int, the width of the image @@ -187,7 +187,7 @@ class ERA5Pkl2Tfrecords(ERA5Dataset): month : int, the target month to save to tfrecord """ #Define the input_file based on the year and month - self.input_file_year = os.path.join(os.path.join(self.input_dir, "pickle"),str(year)) + self.input_file_year = os.path.join(self.input_dir,"pickle",str(year)) input_file = os.path.join(self.input_file_year,'X_{:02d}.pkl'.format(month)) temp_input_file = os.path.join(self.input_file_year,'T_{:02d}.pkl'.format(month)) diff --git a/video_prediction_tools/main_scripts/main_preprocess_data_step2.py b/video_prediction_tools/main_scripts/main_preprocess_data_step2.py index 4c13ea258d0e6ffce91c30fc265cc1e6a3f32425..a9e77a02e8f4d5f19e9270704cc66ee843920ba0 100644 --- a/video_prediction_tools/main_scripts/main_preprocess_data_step2.py +++ b/video_prediction_tools/main_scripts/main_preprocess_data_step2.py @@ -58,7 +58,7 @@ def main(): stat_obj = Calc_data_stat(nvars) # init statistic-instance # loop over whole data set (training, dev and test set) to collect the intermediate statistics - print("Start collecting statistics from the whole datset to be processed...") + print("Start collecting statistics from the whole dataset to be processed...") for split in partition.keys(): values = partition[split] for year in values.keys():