diff --git a/video_prediction_tools/other_scripts/visualize_postprocess_era5_template.sh b/video_prediction_tools/other_scripts/visualize_postprocess_era5_template.sh index 337a817bad5e602ebaff0215f6fecf89788bedc2..a9d9c621d4c090f17669650613d340a6bf9a5e7a 100644 --- a/video_prediction_tools/other_scripts/visualize_postprocess_era5_template.sh +++ b/video_prediction_tools/other_scripts/visualize_postprocess_era5_template.sh @@ -6,16 +6,18 @@ VIRT_ENV_NAME=venv_test echo "Activating virtual environment..." source ../virtual_envs/${VIRT_ENV_NAME}/bin/activate -#the source directory contains the tfrecords -checkpoint_dir=/home/b.gong/model/checkpoint_89 -results_dir=/home/b.gong/results/ -lquick=1 +#checkpoint_dir: the checkpoint directory from train step +checkpoint_dir=/path/to/checkpoint/directory +#Results_dir: the output dir to save the results +results_dir=/path/to/results/directory +#Climate_file: the netcdf file point to the climtology, which you can download along with the samples data climate_file=/home/b.gong/data_era5/T2monthly/climatology_t2m_1991-2020.nc #select models model=convLSTM -#mkdir ${results_dir} + +# The --lquick_evaluation enable you to quick test and generate the results. If you want to test on full large test dataset, please remove the --lquick_evaluation argument python3 ../main_scripts/main_visualize_postprocess.py --checkpoint ${checkpoint_dir} --mode test \ --results_dir ${results_dir} --batch_size 4 \ --num_stochastic_samples 1 \ - --lquick_evaluation ${lquick} --climatology_file ${climate_file} + --lquick_evaluation --climatology_file ${climate_file}