Skip to content
Snippets Groups Projects
Select Git revision
  • 4a63e0903fd7c465b440185ad1e2ac535dfb6a2f
  • bing_issues#190_tf2
  • bing_tf2_convert
  • bing_issue#189_train_modular
  • simon_#172_integrate_weatherbench
  • develop
  • bing_issue#188_restructure_ambs
  • yan_issue#100_extract_prcp_data
  • bing_issue#170_data_preprocess_training_tf1
  • Gong2022_temperature_forecasts
  • bing_issue#186_clean_GMD1_tag
  • yan_issue#179_integrate_GZAWS_data_onfly
  • bing_issue#178_runscript_bug_postprocess
  • michael_issue#187_bugfix_setup_runscript_template
  • bing_issue#180_bugs_postprpocess_meta_postprocess
  • yan_issue#177_repo_for_CLGAN_gmd
  • bing_issue#176_integrate_weather_bench
  • michael_issue#181_eval_era5_forecasts
  • michael_issue#182_eval_subdomain
  • michael_issue#119_warmup_Horovod
  • bing_issue#160_test_zam347
  • ambs_v1
  • ambs_gmd_nowcasting_v1.0
  • GMD1
  • modular_booster_20210203
  • new_structure_20201004_v1.0
  • old_structure_20200930
27 results

ambs

user avatar
Bing Gong authored
4a63e090
History

Video Prediction by GAN

This project aims to adopt the GAN-based architectures, which original proposed by Project Page(https://alexlee-gk.github.io/video_prediction/) Paper(https://arxiv.org/abs/1804.01523), to predict temperature based on ERA5 data

Getting Started

Prerequisites

  • Linux or macOS
  • Python 3
  • CPU or NVIDIA GPU + CUDA CuDNN

Installation

  • Clone this repo:
git clone -b master https://gitlab.version.fz-juelich.de/gong1/video_prediction_savp.git
cd Video_Prediction_SAVP
pip install -r requirements.txt

Miscellaneous installation considerations

  • In python >= 3.6, make sure to add the root directory to thePYTHONPATH, e.g. export PYTHONPATH=path/to/video_prediction_savp`.
  • For the best speed and experimental results, we recommend using cudnn version 7.3.0.29 and any tensorflow version >= 1.9 and <= 1.12. The final training loss is worse when using cudnn versions 7.3.1.20 or 7.4.1.5, compared to when using versions 7.3.0.29 and below.
  • Add the directories lpips-tensorflow and hickle (get from Workflow project to the PATHONPATH , e.g export PYTHONPATH=path/to/lpips-tensorflow

Download data

  • Download the ERA5 data (.hkl) from the output of DataPreprocess in the Workflow project
bash data/download_and_preprocess_dataset_era5.sh --data era5 --input_dir /splits --output_dir  data/era5 

Model Training

python scripts/train.py --input_dir data/era5 --dataset era5  --model savp --model_hparams_dict hparams/kth/ours_savp/model_hparams.json --output_dir logs/era5/ours_savp