diff --git a/mlair/model_modules/abstract_model_class.py b/mlair/model_modules/abstract_model_class.py
index 4dc9521abf3569eb57249286e92c1e6a259c667d..7ecaad9cf077100f3b9a34b02c99e172d141a218 100644
--- a/mlair/model_modules/abstract_model_class.py
+++ b/mlair/model_modules/abstract_model_class.py
@@ -38,10 +38,12 @@ class AbstractModelClass(ABC):
         self._input_shape = input_shape
         self._output_shape = self.__extract_from_tuple(output_shape)
 
-    def load_model(self, name: str):
+    def load_model(self, name: str, compile: bool = False):
         hist = self.model.history
         self.model = keras.models.load_model(name)
         self.model.history = hist
+        if compile is True:
+            self.model.compile(**self.compile_options)
 
     def __getattr__(self, name: str) -> Any:
         """
diff --git a/mlair/plotting/training_monitoring.py b/mlair/plotting/training_monitoring.py
index b2b531b99c85bb43e4e758fd23045c9f0575cb24..39dd80651226519463d7b503fb612e43983d73cf 100644
--- a/mlair/plotting/training_monitoring.py
+++ b/mlair/plotting/training_monitoring.py
@@ -45,15 +45,18 @@ class PlotModelHistory:
         self._additional_columns = self._filter_columns(history)
         self._plot(filename)
 
-    @staticmethod
-    def _get_plot_metric(history, plot_metric, main_branch):
-        if plot_metric.lower() == "mse":
-            plot_metric = "mean_squared_error"
-        elif plot_metric.lower() == "mae":
-            plot_metric = "mean_absolute_error"
+    def _get_plot_metric(self, history, plot_metric, main_branch, correct_names=True):
+        _plot_metric = plot_metric
+        if correct_names is True:
+            if plot_metric.lower() == "mse":
+                plot_metric = "mean_squared_error"
+            elif plot_metric.lower() == "mae":
+                plot_metric = "mean_absolute_error"
         available_keys = [k for k in history.keys() if
                           plot_metric in k and ("main" in k.lower() if main_branch else True)]
         available_keys.sort(key=len)
+        if len(available_keys) == 0 and correct_names is True:
+            return self._get_plot_metric(history, _plot_metric, main_branch, correct_names=False)
         return available_keys[0]
 
     def _filter_columns(self, history: Dict) -> List[str]:
diff --git a/mlair/run_modules/training.py b/mlair/run_modules/training.py
index 0d875766926e870349337a0597e2b3612a93ee07..c076253d92a0e24f419046805687d2a80143176c 100644
--- a/mlair/run_modules/training.py
+++ b/mlair/run_modules/training.py
@@ -149,7 +149,7 @@ class Training(RunEnvironment):
             logging.info("Found locally stored model and checkpoints. Training is resumed from the last checkpoint.")
             self.callbacks.load_callbacks()
             self.callbacks.update_checkpoint()
-            self.model.load_model(checkpoint.filepath)
+            self.model.load_model(checkpoint.filepath, compile=True)
             hist: History = self.callbacks.get_callback_by_name("hist")
             initial_epoch = max(hist.epoch) + 1
             _ = self.model.fit(self.train_set,
@@ -190,8 +190,8 @@ class Training(RunEnvironment):
         """
         logging.debug(f"load best model: {name}")
         try:
-            self.model.load_model(name)
-            logging.info('reload weights...')
+            self.model.load_model(name, compile=True)
+            logging.info('reload model...')
         except OSError:
             logging.info('no weights to reload...')
 
@@ -236,9 +236,11 @@ class Training(RunEnvironment):
         if multiple_branches_used:
             filename = os.path.join(path, f"{name}_history_main_loss.pdf")
             PlotModelHistory(filename=filename, history=history, main_branch=True)
-        if len([e for e in history.model.metrics_names if "mean_squared_error" in e]) > 0:
+        mse_indicator = list(set(history.model.metrics_names).intersection(["mean_squared_error", "mse"]))
+        if len(mse_indicator) > 0:
             filename = os.path.join(path, f"{name}_history_main_mse.pdf")
-            PlotModelHistory(filename=filename, history=history, plot_metric="mse", main_branch=multiple_branches_used)
+            PlotModelHistory(filename=filename, history=history, plot_metric=mse_indicator[0],
+                             main_branch=multiple_branches_used)
 
         # plot learning rate
         if lr_sc:
diff --git a/run_mixed_sampling.py b/run_mixed_sampling.py
index 784f653fbfb2eb4c78e6e858acf67cd0ae47a593..47aa9b970c0e95ccadb60e8c090136c0fa6ceea4 100644
--- a/run_mixed_sampling.py
+++ b/run_mixed_sampling.py
@@ -4,8 +4,8 @@ __date__ = '2019-11-14'
 import argparse
 
 from mlair.workflows import DefaultWorkflow
-from mlair.data_handler.data_handler_mixed_sampling import DataHandlerMixedSampling, DataHandlerMixedSamplingWithFilter, \
-    DataHandlerSeparationOfScales
+from mlair.data_handler.data_handler_mixed_sampling import DataHandlerMixedSampling
+
 
 stats = {'o3': 'dma8eu', 'no': 'dma8eu', 'no2': 'dma8eu',
          'relhum': 'average_values', 'u': 'average_values', 'v': 'average_values',
@@ -20,7 +20,7 @@ data_origin = {'o3': '', 'no': '', 'no2': '',
 def main(parser_args):
     args = dict(stations=["DEBW107", "DEBW013"],
                 network="UBA",
-                evaluate_feature_importance=False, plot_list=[],
+                evaluate_feature_importance=True, # plot_list=[],
                 data_origin=data_origin, data_handler=DataHandlerMixedSampling,
                 interpolation_limit=(3, 1), overwrite_local_data=False,
                 sampling=("hourly", "daily"),
@@ -28,8 +28,6 @@ def main(parser_args):
                 create_new_model=True, train_model=False, epochs=1,
                 window_history_size=6 * 24 + 16,
                 window_history_offset=16,
-                kz_filter_length=[100 * 24, 15 * 24],
-                kz_filter_iter=[4, 5],
                 start="2006-01-01",
                 train_start="2006-01-01",
                 end="2011-12-31",