diff --git a/src/modules/experiment_setup.py b/src/modules/experiment_setup.py index 0c9d9ed18d8543083375175e1bc118cd0b903e67..f81d2a5b7ff2c7ab477454ee34d77f2c15381dd4 100644 --- a/src/modules/experiment_setup.py +++ b/src/modules/experiment_setup.py @@ -27,10 +27,12 @@ class ExperimentSetup(RunEnvironment): trainable: Train new model if true, otherwise try to load existing model """ - def __init__(self, parser_args=None, var_all_dict=None, stations=None, network=None, variables=None, target_var="o3", - target_dim=None, dimensions=None, interpolate_dim=None, train_start=None, train_end=None, - val_start=None, val_end=None, test_start=None, test_end=None, use_all_stations_on_all_data_sets=True, - trainable=False, fraction_of_train=None, experiment_path=None): + def __init__(self, parser_args=None, var_all_dict=None, stations=None, network=None, variables=None, + statistics_per_var=None, start=None, end=None, window_history=None, target_var="o3", target_dim=None, + window_lead_time=None, dimensions=None, interpolate_dim=None, interpolate_method=None, + limit_nan_fill=None, train_start=None, train_end=None, val_start=None, val_end=None, test_start=None, + test_end=None, use_all_stations_on_all_data_sets=True, trainable=False, fraction_of_train=None, + experiment_path=None): # create run framework super().__init__() @@ -52,14 +54,21 @@ class ExperimentSetup(RunEnvironment): self._set_param("stations", stations, default=DEFAULT_STATIONS) self._set_param("network", network, default="AIRBASE") self._set_param("variables", variables, default=list(self.data_store.get("var_all_dict", "general").keys())) + self._set_param("statistics_per_var", statistics_per_var, default=self.data_store.get("var_all_dict", "general")) + self._set_param("start", start, default="1997-01-01", scope="general") + self._set_param("end", end, default="2017-12-31", scope="general") + self._set_param("window_history", window_history, default=13) # target self._set_param("target_var", target_var, default="o3") self._set_param("target_dim", target_dim, default='variables') + self._set_param("window_lead_time", window_lead_time, default=3) # interpolation self._set_param("dimensions", dimensions, default={'new_index': ['datetime', 'Stations']}) self._set_param("interpolate_dim", interpolate_dim, default='datetime') + self._set_param("interpolate_method", interpolate_method, default='linear') + self._set_param("limit_nan_fill", limit_nan_fill, default=1) # train parameters self._set_param("start", train_start, default="1997-01-01", scope="general.train") @@ -69,7 +78,7 @@ class ExperimentSetup(RunEnvironment): self._set_param("start", val_start, default="2008-01-01", scope="general.val") self._set_param("end", val_end, default="2009-12-31", scope="general.val") - # validation parameters + # test parameters self._set_param("start", test_start, default="2010-01-01", scope="general.test") self._set_param("end", test_end, default="2017-12-31", scope="general.test") @@ -83,15 +92,13 @@ class ExperimentSetup(RunEnvironment): logging.debug(f"set experiment attribute: {param}({scope})={value}") @staticmethod - def _get_parser_args(args: Union[Dict, argparse.Namespace, argparse.ArgumentParser]) -> Dict: + def _get_parser_args(args: Union[Dict, argparse.Namespace]) -> Dict: """ Transform args to dict if given as argparse.Namespace :param args: either a dictionary or an argument parser instance :return: dictionary with all arguments """ - if isinstance(args, argparse.ArgumentParser): - return args.parse_args().__dict__ - elif isinstance(args, argparse.Namespace): + if isinstance(args, argparse.Namespace): return args.__dict__ elif isinstance(args, dict): return args diff --git a/test/test_modules/test_experiment_setup.py b/test/test_modules/test_experiment_setup.py index 162ea469f47a52fafa2a5f0f9c4bf796f0adc0a2..832ff45a0a3b1384e1300c0fa38ed3d1ec2204b8 100644 --- a/test/test_modules/test_experiment_setup.py +++ b/test/test_modules/test_experiment_setup.py @@ -45,15 +45,18 @@ class TestExperimentSetup: def test_init_default(self): exp_setup = ExperimentSetup() data_store = exp_setup.data_store + # experiment setup assert data_store.get("data_path", "general") == prepare_host() assert data_store.get("trainable", "general") is False assert data_store.get("fraction_of_train", "general") == 0.8 + # set experiment name assert data_store.get("experiment_name", "general") == "TestExperiment" path = os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "..", "TestExperiment")) assert data_store.get("experiment_path", "general") == path default_var_all_dict = {'o3': 'dma8eu', 'relhum': 'average_values', 'temp': 'maximum', 'u': 'average_values', 'v': 'average_values', 'no': 'dma8eu', 'no2': 'dma8eu', 'cloudcover': 'average_values', 'pblheight': 'maximum'} + # setup for data assert data_store.get("var_all_dict", "general") == default_var_all_dict default_stations = ['DEBW107', 'DEBY081', 'DEBW013', 'DEBW076', 'DEBW087', 'DEBY052', 'DEBY032', 'DEBW022', 'DEBY004', 'DEBY020', 'DEBW030', 'DEBW037', 'DEBW031', 'DEBW015', 'DEBW073', 'DEBY039', @@ -65,50 +68,80 @@ class TestExperimentSetup: assert data_store.get("stations", "general") == default_stations assert data_store.get("network", "general") == "AIRBASE" assert data_store.get("variables", "general") == list(default_var_all_dict.keys()) + assert data_store.get("statistics_per_var", "general") == default_var_all_dict + assert data_store.get("start", "general") == "1997-01-01" + assert data_store.get("end", "general") == "2017-12-31" + assert data_store.get("window_history", "general") == 13 + # target assert data_store.get("target_var", "general") == "o3" assert data_store.get("target_dim", "general") == "variables" + assert data_store.get("window_lead_time", "general") == 3 + # interpolation assert data_store.get("dimensions", "general") == {'new_index': ['datetime', 'Stations']} assert data_store.get("interpolate_dim", "general") == "datetime" - with pytest.raises(NameNotFoundInScope): - data_store.get("start", "general") - with pytest.raises(NameNotFoundInScope): - data_store.get("end", "general") + assert data_store.get("interpolate_method", "general") == "linear" + assert data_store.get("limit_nan_fill", "general") == 1 + # train parameters assert data_store.get("start", "general.train") == "1997-01-01" assert data_store.get("end", "general.train") == "2007-12-31" + # validation parameters assert data_store.get("start", "general.val") == "2008-01-01" assert data_store.get("end", "general.val") == "2009-12-31" + # test parameters assert data_store.get("start", "general.test") == "2010-01-01" assert data_store.get("end", "general.test") == "2017-12-31" + # use all stations on all data sets (train, val, test) + assert data_store.get("use_all_stations_on_all_data_sets", "general") is True def test_init_no_default(self): experiment_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "data", "testExperimentFolder")) kwargs = dict(parser_args={"experiment_date": "TODAY"}, var_all_dict={'o3': 'dma8eu', 'relhum': 'average_values', 'temp': 'maximum'}, stations=['DEBY053', 'DEBW059', 'DEBW027'], network="INTERNET", variables=["o3", "temp"], - target_var="temp", target_dim="target", dimensions="dim1", interpolate_dim="int_dim", - train_start="2000-01-01", train_end="2000-01-02", val_start="2000-01-03", val_end="2000-01-04", - test_start="2000-01-05", test_end="2000-01-06", use_all_stations_on_all_data_sets=False, - trainable=True, fraction_of_train=0.5, experiment_path=experiment_path) + statistics_per_var=None, start="1999-01-01", end="2001-01-01", window_history=4, + target_var="temp", target_dim="target", window_lead_time=10, dimensions="dim1", + interpolate_dim="int_dim", interpolate_method="cubic", limit_nan_fill=5, train_start="2000-01-01", + train_end="2000-01-02", val_start="2000-01-03", val_end="2000-01-04", test_start="2000-01-05", + test_end="2000-01-06", use_all_stations_on_all_data_sets=False, trainable=True, + fraction_of_train=0.5, experiment_path=experiment_path) exp_setup = ExperimentSetup(**kwargs) data_store = exp_setup.data_store + # experiment setup assert data_store.get("data_path", "general") == prepare_host() assert data_store.get("trainable", "general") is True assert data_store.get("fraction_of_train", "general") == 0.5 + # set experiment name assert data_store.get("experiment_name", "general") == "TODAY_network/" path = os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "data", "testExperimentFolder")) assert data_store.get("experiment_path", "general") == path + # setup for data assert data_store.get("var_all_dict", "general") == {'o3': 'dma8eu', 'relhum': 'average_values', 'temp': 'maximum'} assert data_store.get("stations", "general") == ['DEBY053', 'DEBW059', 'DEBW027'] assert data_store.get("network", "general") == "INTERNET" assert data_store.get("variables", "general") == ["o3", "temp"] + assert data_store.get("statistics_per_var", "general") == {'o3': 'dma8eu', 'relhum': 'average_values', + 'temp': 'maximum'} + assert data_store.get("start", "general") == "1999-01-01" + assert data_store.get("end", "general") == "2001-01-01" + assert data_store.get("window_history", "general") == 4 + # target assert data_store.get("target_var", "general") == "temp" assert data_store.get("target_dim", "general") == "target" + assert data_store.get("window_lead_time", "general") == 10 + # interpolation assert data_store.get("dimensions", "general") == "dim1" assert data_store.get("interpolate_dim", "general") == "int_dim" + assert data_store.get("interpolate_method", "general") == "cubic" + assert data_store.get("limit_nan_fill", "general") == 5 + # train parameters assert data_store.get("start", "general.train") == "2000-01-01" assert data_store.get("end", "general.train") == "2000-01-02" + # validation parameters assert data_store.get("start", "general.val") == "2000-01-03" assert data_store.get("end", "general.val") == "2000-01-04" + # test parameters assert data_store.get("start", "general.test") == "2000-01-05" assert data_store.get("end", "general.test") == "2000-01-06" + # use all stations on all data sets (train, val, test) + assert data_store.get("use_all_stations_on_all_data_sets", "general.test") is False