diff --git a/mlair/configuration/defaults.py b/mlair/configuration/defaults.py
index a83b3f597e202dde44447a301e6ca10688ff1b79..cd3d0065d845c8dd498b38f347d59f5a39d7162b 100644
--- a/mlair/configuration/defaults.py
+++ b/mlair/configuration/defaults.py
@@ -29,7 +29,7 @@ DEFAULT_TARGET_VAR = "o3"
 DEFAULT_TARGET_DIM = "variables"
 DEFAULT_WINDOW_LEAD_TIME = 3
 DEFAULT_DIMENSIONS = {"new_index": ["datetime", "Stations"]}
-DEFAULT_INTERPOLATION_DIM = "datetime"
+DEFAULT_TIME_DIM = "datetime"
 DEFAULT_INTERPOLATION_METHOD = "linear"
 DEFAULT_LIMIT_NAN_FILL = 1
 DEFAULT_TRAIN_START = "1997-01-01"
diff --git a/mlair/data_handler/data_preparation_neighbors.py b/mlair/data_handler/data_preparation_neighbors.py
index 93d21f3ae2cb8a8b287bfc23f38b427bb56ec677..0c95b242e1046618403ebb6592407ef8b680e890 100644
--- a/mlair/data_handler/data_preparation_neighbors.py
+++ b/mlair/data_handler/data_preparation_neighbors.py
@@ -53,7 +53,7 @@ if __name__ == "__main__":
               "sampling": 'daily',
               "target_dim": 'variables',
               "target_var": 'o3',
-              "interpolation_dim": 'datetime',
+              "time_dim": 'datetime',
               "window_history_size": 7,
               "window_lead_time": 3,
               "neighbors": ["DEBW034"],
diff --git a/mlair/data_handler/station_preparation.py b/mlair/data_handler/station_preparation.py
index 57dd60653908d76815742324e4d78c3344a1465f..90138838ccdfd54e5c7a39bf5b28b2ba47575d30 100644
--- a/mlair/data_handler/station_preparation.py
+++ b/mlair/data_handler/station_preparation.py
@@ -39,7 +39,7 @@ class AbstractStationPrep(object):
 class StationPrep(AbstractStationPrep):
 
     def __init__(self, station, data_path, statistics_per_var, station_type, network, sampling,
-                 target_dim, target_var, interpolation_dim, window_history_size, window_lead_time,
+                 target_dim, target_var, time_dim, window_history_size, window_lead_time,
                  overwrite_local_data: bool = False, transformation=None, store_data_locally: bool = True,
                  min_length: int = 0, start=None, end=None, **kwargs):
         super().__init__()  # path, station, statistics_per_var, transformation, **kwargs)
@@ -53,7 +53,7 @@ class StationPrep(AbstractStationPrep):
         self.sampling = sampling
         self.target_dim = target_dim
         self.target_var = target_var
-        self.interpolation_dim = interpolation_dim
+        self.time_dim = time_dim
         self.window_history_size = window_history_size
         self.window_lead_time = window_lead_time
         self.overwrite_local_data = overwrite_local_data
@@ -99,7 +99,7 @@ class StationPrep(AbstractStationPrep):
                f"statistics_per_var={self.statistics_per_var}, " \
                f"station_type='{self.station_type}', network='{self.network}', " \
                f"sampling='{self.sampling}', target_dim='{self.target_dim}', target_var='{self.target_var}', " \
-               f"interpolate_dim='{self.interpolation_dim}', window_history_size={self.window_history_size}, " \
+               f"time_dim='{self.time_dim}', window_history_size={self.window_history_size}, " \
                f"window_lead_time={self.window_lead_time}, overwrite_local_data={self.overwrite_local_data}, " \
                f"transformation={self._print_transformation_as_string}, **{self.kwargs})"
 
@@ -144,7 +144,7 @@ class StationPrep(AbstractStationPrep):
         return coords.rename(index={"station_lon": "lon", "station_lat": "lat"}).to_dict()[str(self)]
 
     def call_transform(self, inverse=False):
-        self.transform(dim=self.interpolation_dim, method=self.transformation["method"],
+        self.transform(dim=self.time_dim, method=self.transformation["method"],
                        mean=self.transformation['mean'], std=self.transformation["std"],
                        min_val=self.transformation["min"], max_val=self.transformation["max"],
                        inverse=inverse
@@ -164,10 +164,10 @@ class StationPrep(AbstractStationPrep):
         self.make_samples()
 
     def make_samples(self):
-        self.make_history_window(self.target_dim, self.window_history_size, self.interpolation_dim)
-        self.make_labels(self.target_dim, self.target_var, self.interpolation_dim, self.window_lead_time)
-        self.make_observation(self.target_dim, self.target_var, self.interpolation_dim)
-        self.remove_nan(self.interpolation_dim)
+        self.make_history_window(self.target_dim, self.window_history_size, self.time_dim)
+        self.make_labels(self.target_dim, self.target_var, self.time_dim, self.window_lead_time)
+        self.make_observation(self.target_dim, self.target_var, self.time_dim)
+        self.remove_nan(self.time_dim)
 
     def read_data_from_disk(self, source_name=""):
         """
@@ -658,13 +658,13 @@ if __name__ == "__main__":
     sp = StationPrep(data_path='/home/felix/PycharmProjects/mlt_new/data/', station='DEBY122',
                      statistics_per_var=statistics_per_var, station_type='background',
                      network='UBA', sampling='daily', target_dim='variables', target_var='o3',
-                     interpolation_dim='datetime', window_history_size=7, window_lead_time=3,
+                     time_dim='datetime', window_history_size=7, window_lead_time=3,
                      )  # transformation={'method': 'standardise'})
     # sp.set_transformation({'method': 'standardise', 'mean': sp.mean+2, 'std': sp.std+1})
     sp2 = StationPrep(data_path='/home/felix/PycharmProjects/mlt_new/data/', station='DEBY122',
                       statistics_per_var=statistics_per_var, station_type='background',
                       network='UBA', sampling='daily', target_dim='variables', target_var='o3',
-                      interpolation_dim='datetime', window_history_size=7, window_lead_time=3,
+                      time_dim='datetime', window_history_size=7, window_lead_time=3,
                       transformation={'method': 'standardise'})
     sp2.transform(inverse=True)
     sp.get_X()
diff --git a/mlair/run_modules/experiment_setup.py b/mlair/run_modules/experiment_setup.py
index 9b74c473c3c1bf33efdbff3a8f38ee482250cbed..fe58cd3797eed9b5979e0b57ec00d76ce53a68d6 100644
--- a/mlair/run_modules/experiment_setup.py
+++ b/mlair/run_modules/experiment_setup.py
@@ -13,7 +13,7 @@ from mlair.configuration.defaults import DEFAULT_STATIONS, DEFAULT_VAR_ALL_DICT,
     DEFAULT_HPC_LOGIN_LIST, DEFAULT_HPC_HOST_LIST, DEFAULT_CREATE_NEW_MODEL, DEFAULT_TRAINABLE, \
     DEFAULT_FRACTION_OF_TRAINING, DEFAULT_EXTREME_VALUES, DEFAULT_EXTREMES_ON_RIGHT_TAIL_ONLY, DEFAULT_PERMUTE_DATA, \
     DEFAULT_BATCH_SIZE, DEFAULT_EPOCHS, DEFAULT_TARGET_VAR, DEFAULT_TARGET_DIM, DEFAULT_WINDOW_LEAD_TIME, \
-    DEFAULT_DIMENSIONS, DEFAULT_INTERPOLATION_DIM, DEFAULT_INTERPOLATION_METHOD, DEFAULT_LIMIT_NAN_FILL, \
+    DEFAULT_DIMENSIONS, DEFAULT_TIME_DIM, DEFAULT_INTERPOLATION_METHOD, DEFAULT_LIMIT_NAN_FILL, \
     DEFAULT_TRAIN_START, DEFAULT_TRAIN_END, DEFAULT_TRAIN_MIN_LENGTH, DEFAULT_VAL_START, DEFAULT_VAL_END, \
     DEFAULT_VAL_MIN_LENGTH, DEFAULT_TEST_START, DEFAULT_TEST_END, DEFAULT_TEST_MIN_LENGTH, DEFAULT_TRAIN_VAL_MIN_LENGTH, \
     DEFAULT_USE_ALL_STATIONS_ON_ALL_DATA_SETS, DEFAULT_EVALUATE_BOOTSTRAPS, DEFAULT_CREATE_NEW_BOOTSTRAPS, \
@@ -66,7 +66,7 @@ class ExperimentSetup(RunEnvironment):
 
         # interpolation
         self._set_param("dimensions", dimensions, default={'new_index': ['datetime', 'Stations']})
-        self._set_param("interpolation_dim", interpolation_dim, default='datetime')
+        self._set_param("time_dim", time_dim, default='datetime')
         self._set_param("interpolation_method", interpolation_method, default='linear')
         self._set_param("limit_nan_fill", limit_nan_fill, default=1)
 
@@ -140,7 +140,7 @@ class ExperimentSetup(RunEnvironment):
     :param window_lead_time: number of time steps to predict by model (default 3). Time steps `t_0+1` to `t_0+w` are
         predicted.
     :param dimensions:
-    :param interpolation_dim:
+    :param time_dim:
     :param interpolation_method:
     :param limit_nan_fill:
     :param train_start:
@@ -220,7 +220,7 @@ class ExperimentSetup(RunEnvironment):
                  target_dim=None,
                  window_lead_time: int = None,
                  dimensions=None,
-                 interpolation_dim=None,
+                 time_dim=None,
                  interpolation_method=None,
                  limit_nan_fill=None, train_start=None, train_end=None, val_start=None, val_end=None, test_start=None,
                  test_end=None, use_all_stations_on_all_data_sets=None, trainable: bool = None, fraction_of_train: float = None,
@@ -309,7 +309,7 @@ class ExperimentSetup(RunEnvironment):
 
         # interpolation
         self._set_param("dimensions", dimensions, default=DEFAULT_DIMENSIONS)
-        self._set_param("interpolation_dim", interpolation_dim, default=DEFAULT_INTERPOLATION_DIM)
+        self._set_param("time_dim", time_dim, default=DEFAULT_TIME_DIM)
         self._set_param("interpolation_method", interpolation_method, default=DEFAULT_INTERPOLATION_METHOD)
         self._set_param("limit_nan_fill", limit_nan_fill, default=DEFAULT_LIMIT_NAN_FILL)
 
diff --git a/mlair/run_modules/post_processing.py b/mlair/run_modules/post_processing.py
index c781d593d9bf8d8747ebc823fc15038c083ac81a..8bbef1ec2159f532818d4dc4ff597cdbc57dfb07 100644
--- a/mlair/run_modules/post_processing.py
+++ b/mlair/run_modules/post_processing.py
@@ -264,7 +264,7 @@ class PostProcessing(RunEnvironment):
         path = self.data_store.get("forecast_path")
 
         plot_list = self.data_store.get("plot_list", "postprocessing")
-        time_dimension = self.data_store.get("interpolation_dim")
+        time_dimension = self.data_store.get("time_dim")
 
         if self.bootstrap_skill_scores is not None and "PlotBootstrapSkillScore" in plot_list:
             PlotBootstrapSkillScore(self.bootstrap_skill_scores, plot_folder=self.plot_path, model_setup="CNN")
@@ -317,7 +317,7 @@ class PostProcessing(RunEnvironment):
         be found inside `forecast_path`.
         """
         logging.debug("start make_prediction")
-        time_dimension = self.data_store.get("interpolation_dim")
+        time_dimension = self.data_store.get("time_dim")
         for i, data in enumerate(self.test_data):
             input_data = data.get_X()
             target_data = data.get_Y(as_numpy=False)
diff --git a/mlair/run_modules/pre_processing.py b/mlair/run_modules/pre_processing.py
index 6b8c0f3c7003b194265308d580ba0f2b4df76df1..05c62aa35d9f8542ced94ae9cfc29719f3903bc8 100644
--- a/mlair/run_modules/pre_processing.py
+++ b/mlair/run_modules/pre_processing.py
@@ -16,7 +16,7 @@ from mlair.configuration import path_config
 from mlair.helpers.join import EmptyQueryResult
 from mlair.run_modules.run_environment import RunEnvironment
 
-DEFAULT_ARGS_LIST = ["data_path", "stations", "variables", "interpolation_dim", "target_dim", "target_var"]
+DEFAULT_ARGS_LIST = ["data_path", "stations", "variables", "time_dim", "target_dim", "target_var"]
 DEFAULT_KWARGS_LIST = ["limit_nan_fill", "window_history_size", "window_lead_time", "statistics_per_var", "min_length",
                        "station_type", "overwrite_local_data", "start", "end", "sampling", "transformation",
                        "extreme_values", "extremes_on_right_tail_only", "network", "data_preparation"]
@@ -203,7 +203,7 @@ class PreProcessing(RunEnvironment):
         loading time are logged in debug mode.
 
         :param args: Dictionary with required parameters for DataGenerator class (`data_path`, `network`, `stations`,
-            `variables`, `interpolation_dim`, `target_dim`, `target_var`).
+            `variables`, `time_dim`, `target_dim`, `target_var`).
         :param kwargs: positional parameters for the DataGenerator class (e.g. `start`, `interpolation_method`,
             `window_lead_time`).
         :param all_stations: All stations to check.
diff --git a/mlair/workflows/default_workflow.py b/mlair/workflows/default_workflow.py
index f42c0389d81f655fb0c8582a15e42acc853f757d..006a2c98421d3e205bcf63df159d802cb88ebd38 100644
--- a/mlair/workflows/default_workflow.py
+++ b/mlair/workflows/default_workflow.py
@@ -24,7 +24,7 @@ class DefaultWorkflow(Workflow):
         target_var=None, target_dim=None,
         window_lead_time=None,
         dimensions=None,
-        interpolate_method=None, interpolate_dim=None, limit_nan_fill=None,
+        interpolate_method=None, time_dim=None, limit_nan_fill=None,
         train_start=None, train_end=None, val_start=None, val_end=None, test_start=None, test_end=None,
         use_all_stations_on_all_data_sets=None, fraction_of_train=None,
         experiment_path=None, plot_path=None, forecast_path=None, bootstrap_path=None, overwrite_local_data=None,
@@ -69,7 +69,7 @@ class DefaultWorkflowHPC(Workflow):
         target_var=None, target_dim=None,
         window_lead_time=None,
         dimensions=None,
-        interpolate_method=None, interpolate_dim=None, limit_nan_fill=None,
+        interpolate_method=None, time_dim=None, limit_nan_fill=None,
         train_start=None, train_end=None, val_start=None, val_end=None, test_start=None, test_end=None,
         use_all_stations_on_all_data_sets=None, fraction_of_train=None,
         experiment_path=None, plot_path=None, forecast_path=None, bootstrap_path=None, overwrite_local_data=None,
diff --git a/test/test_data_handler/old_t_data_generator.py b/test/test_data_handler/old_t_data_generator.py
index cd2a849ec2d24af940fcf5731597cc8e9a16f517..9198923e2f75601f2ce7e6dc18a663da647eaadb 100644
--- a/test/test_data_handler/old_t_data_generator.py
+++ b/test/test_data_handler/old_t_data_generator.py
@@ -79,7 +79,7 @@ class TestDataGenerator:
         assert gen.stations == ['DEBW107']
         assert gen.variables == ['o3', 'temp']
         assert gen.station_type is None
-        assert gen.interpolation_dim == 'datetime'
+        assert gen.time_dim == 'datetime'
         assert gen.target_dim == 'variables'
         assert gen.target_var == 'o3'
         assert gen.interpolation_method == "linear"
diff --git a/test/test_run_modules/test_experiment_setup.py b/test/test_run_modules/test_experiment_setup.py
index 0f1f7a0cb918b4a1ab4e776fe9f9a563eb244149..102bf32749bd2b0dcc5b1fb5b3c838543109100d 100644
--- a/test/test_run_modules/test_experiment_setup.py
+++ b/test/test_run_modules/test_experiment_setup.py
@@ -64,7 +64,7 @@ class TestExperimentSetup:
         assert data_store.get("window_lead_time", "general") == 3
         # interpolation
         assert data_store.get("dimensions", "general") == {'new_index': ['datetime', 'Stations']}
-        assert data_store.get("interpolation_dim", "general") == "datetime"
+        assert data_store.get("time_dim", "general") == "datetime"
         assert data_store.get("interpolation_method", "general") == "linear"
         assert data_store.get("limit_nan_fill", "general") == 1
         # train parameters
@@ -93,7 +93,7 @@ class TestExperimentSetup:
                       stations=['DEBY053', 'DEBW059', 'DEBW027'], network="INTERNET", station_type="background",
                       variables=["o3", "temp"], start="1999-01-01", end="2001-01-01", window_history_size=4,
                       target_var="relhum", target_dim="target", window_lead_time=10, dimensions="dim1",
-                      interpolation_dim="int_dim", interpolation_method="cubic", limit_nan_fill=5, train_start="2000-01-01",
+                      time_dim="int_dim", interpolation_method="cubic", limit_nan_fill=5, train_start="2000-01-01",
                       train_end="2000-01-02", val_start="2000-01-03", val_end="2000-01-04", test_start="2000-01-05",
                       test_end="2000-01-06", use_all_stations_on_all_data_sets=False, trainable=False,
                       fraction_of_train=0.5, experiment_path=experiment_path, create_new_model=True, val_min_length=20)
@@ -125,7 +125,7 @@ class TestExperimentSetup:
         assert data_store.get("window_lead_time", "general") == 10
         # interpolation
         assert data_store.get("dimensions", "general") == "dim1"
-        assert data_store.get("interpolation_dim", "general") == "int_dim"
+        assert data_store.get("time_dim", "general") == "int_dim"
         assert data_store.get("interpolation_method", "general") == "cubic"
         assert data_store.get("limit_nan_fill", "general") == 5
         # train parameters
diff --git a/test/test_run_modules/test_training.py b/test/test_run_modules/test_training.py
index fddcdfdd9d7ecc73052e0038c8e7692104b249e2..1fec8f4e56e2925bff0bc4af859dac1fe5fbb2b6 100644
--- a/test/test_run_modules/test_training.py
+++ b/test/test_run_modules/test_training.py
@@ -128,7 +128,7 @@ class TestTraining:
         data_prep = DefaultDataPreparation.build(['DEBW107'], data_path=os.path.join(os.path.dirname(__file__), 'data'),
                                                  statistics_per_var=statistics_per_var, station_type="background",
                                                  network="AIRBASE", sampling="daily", target_dim="variables",
-                                                 target_var="o3", interpolation_dim="datetime",
+                                                 target_var="o3", time_dim="datetime",
                                                  window_history_size=window_history_size,
                                                  window_lead_time=window_lead_time, name_affix="train")
         return DataCollection([data_prep])