diff --git a/mlair/data_handler/data_handler_single_station.py b/mlair/data_handler/data_handler_single_station.py index ec0f1f73282979a1e69945e1ad7f6817bdf3ba12..fa02e5f6d0ec2c99cf9f50583c7f4d2f5a8e2d71 100644 --- a/mlair/data_handler/data_handler_single_station.py +++ b/mlair/data_handler/data_handler_single_station.py @@ -375,37 +375,37 @@ class DataHandlerSingleStation(AbstractDataHandler): :return: downloaded data and its meta data """ df_all = {} - df_era5, df_toar = None, None - meta_era5, meta_toar = None, None + df_era5_local, df_toar = None, None + meta_era5_local, meta_toar = None, None if data_origin is not None: - era5_origin = filter_dict_by_value(data_origin, "era5", True) - era5_stats = select_from_dict(statistics_per_var, era5_origin.keys()) - toar_origin = filter_dict_by_value(data_origin, "era5", False) - toar_stats = select_from_dict(statistics_per_var, era5_origin.keys(), filter_cond=False) - assert len(era5_origin) + len(toar_origin) == len(data_origin) - assert len(era5_stats) + len(toar_stats) == len(statistics_per_var) + era5_local_origin = filter_dict_by_value(data_origin, "era5_local", True) + era5_local_stats = select_from_dict(statistics_per_var, era5_local_origin.keys()) + toar_origin = filter_dict_by_value(data_origin, "era5_local", False) + toar_stats = select_from_dict(statistics_per_var, era5_local_origin.keys(), filter_cond=False) + assert len(era5_local_origin) + len(toar_origin) == len(data_origin) + assert len(era5_local_stats) + len(toar_stats) == len(statistics_per_var) else: - era5_origin, toar_origin = None, None - era5_stats, toar_stats = statistics_per_var, statistics_per_var + era5_local_origin, toar_origin = None, None + era5_local_stats, toar_stats = statistics_per_var, statistics_per_var # load data - if era5_origin is not None and len(era5_stats) > 0: + if era5_local_origin is not None and len(era5_local_stats) > 0: # load era5 data - df_era5, meta_era5 = data_sources.era5.load_era5(station_name=station, stat_var=era5_stats, - sampling=sampling, data_origin=era5_origin) + df_era5_local, meta_era5_local = data_sources.era5.load_era5( + station_name=station, stat_var=era5_local_stats, sampling=sampling, data_origin=era5_local_origin) if toar_origin is None or len(toar_stats) > 0: # load combined data from toar-data (v2 & v1) df_toar, meta_toar = data_sources.toar_data.download_toar(station=station, toar_stats=toar_stats, sampling=sampling, data_origin=toar_origin) - if df_era5 is None and df_toar is None: - raise data_sources.toar_data.EmptyQueryResult(f"No data available for era5 and toar-data") + if df_era5_local is None and df_toar is None: + raise data_sources.toar_data.EmptyQueryResult(f"No data available for era5_local and toar-data") - df = pd.concat([df_era5, df_toar], axis=1, sort=True) - if meta_era5 is not None and meta_toar is not None: - meta = meta_era5.combine_first(meta_toar) + df = pd.concat([df_era5_local, df_toar], axis=1, sort=True) + if meta_era5_local is not None and meta_toar is not None: + meta = meta_era5_local.combine_first(meta_toar) else: - meta = meta_era5 if meta_era5 is not None else meta_toar + meta = meta_era5_local if meta_era5_local is not None else meta_toar meta.loc["data_origin"] = str(data_origin) meta.loc["statistics_per_var"] = str(statistics_per_var)