diff --git a/mlair/model_modules/model_class.py b/mlair/model_modules/model_class.py
index d8b2e2f5f53e802e7fb73aa7e56843d564e1a882..43eac09fc5627d69ed80de50d424f99d7c52eab4 100644
--- a/mlair/model_modules/model_class.py
+++ b/mlair/model_modules/model_class.py
@@ -589,13 +589,13 @@ class MyUnet(AbstractModelClass):
 
     def __init__(self, input_shape: list, output_shape: list):
         super().__init__(input_shape[0], output_shape[0])
-        self.first_filter_size = 16*2#self._input_shape[-1]  # 16
-        self.lstm_units = 64 * 2
+        self.first_filter_size = 16 #16*2#self._input_shape[-1]  # 16
+        self.lstm_units = 64 * 2 #* 2
         self.kernel_size = (3, 1)  # (3,1)
         self.activation = "elu"
         self.pool_size = (2, 1)
 
-        # self.dropout = .25
+        self.dropout = .15 #.2
         self.kernel_regularizer = keras.regularizers.l1_l2(l1=0.01, l2=0.01)
         self.bias_regularizer = keras.regularizers.l1_l2(l1=0.01, l2=0.01)
 
@@ -617,7 +617,7 @@ class MyUnet(AbstractModelClass):
         c1 = keras.layers.Conv2D(self.first_filter_size, self.kernel_size, activation=self.activation,
                                  kernel_initializer=self.kernel_initializer, kernel_regularizer=self.kernel_regularizer,
                                  bias_regularizer=self.bias_regularizer)(c1)
-        c1 = keras.layers.Dropout(0.1)(c1)
+        c1 = keras.layers.Dropout(self.dropout)(c1)
         c1 = Padding2D("SymPad2D")(padding=pad_size)(c1)
         c1 = keras.layers.Conv2D(self.first_filter_size, self.kernel_size, activation=self.activation,
                                  kernel_initializer=self.kernel_initializer, name='c1',
@@ -630,7 +630,7 @@ class MyUnet(AbstractModelClass):
         c2 = keras.layers.Conv2D(self.first_filter_size * 2, self.kernel_size, activation=self.activation,
                                  kernel_initializer=self.kernel_initializer, kernel_regularizer=self.kernel_regularizer,
                                  bias_regularizer=self.bias_regularizer)(c2)
-        c2 = keras.layers.Dropout(0.1)(c2)
+        c2 = keras.layers.Dropout(self.dropout)(c2)
         c2 = Padding2D("SymPad2D")(padding=pad_size)(c2)
         c2 = keras.layers.Conv2D(self.first_filter_size * 2, self.kernel_size, activation=self.activation,
                                  kernel_initializer=self.kernel_initializer, name='c2',
@@ -643,7 +643,7 @@ class MyUnet(AbstractModelClass):
         c3 = keras.layers.Conv2D(self.first_filter_size * 4, self.kernel_size, activation=self.activation,
                                  kernel_initializer=self.kernel_initializer, kernel_regularizer=self.kernel_regularizer,
                                  bias_regularizer=self.bias_regularizer)(c3)
-        c3 = keras.layers.Dropout(0.2)(c3)
+        c3 = keras.layers.Dropout(self.dropout*2)(c3)
         c3 = Padding2D("SymPad2D")(padding=pad_size)(c3)
         c3 = keras.layers.Conv2D(self.first_filter_size * 4, self.kernel_size, activation=self.activation,
                                  kernel_initializer=self.kernel_initializer, name='c3',
@@ -674,7 +674,7 @@ class MyUnet(AbstractModelClass):
                                  kernel_initializer=self.kernel_initializer, kernel_regularizer=self.kernel_regularizer,
                                  bias_regularizer=self.bias_regularizer)(c7)
         c7 = keras.layers.concatenate([c7, c4_2], name="Concat_2nd_LSTM")
-        c7 = keras.layers.Dropout(0.2)(c7)
+        c7 = keras.layers.Dropout(self.dropout*2)(c7)
         c7 = Padding2D("SymPad2D")(padding=pad_size)(c7)
         c7 = keras.layers.Conv2D(self.first_filter_size * 4, self.kernel_size, activation=self.activation,
                                  kernel_initializer=self.kernel_initializer, name='c7_to_u8',
@@ -690,7 +690,7 @@ class MyUnet(AbstractModelClass):
         c8 = keras.layers.Conv2D(self.first_filter_size * 2, self.kernel_size, activation=self.activation,
                                  kernel_initializer=self.kernel_initializer, kernel_regularizer=self.kernel_regularizer,
                                  bias_regularizer=self.bias_regularizer)(c8)
-        c8 = keras.layers.Dropout(0.1)(c8)
+        c8 = keras.layers.Dropout(self.dropout)(c8)
         c8 = Padding2D("SymPad2D")(padding=pad_size)(c8)
         c8 = keras.layers.Conv2D(self.first_filter_size * 2, self.kernel_size, activation=self.activation,
                                  kernel_initializer=self.kernel_initializer, name='c8_to_u9',
@@ -705,7 +705,7 @@ class MyUnet(AbstractModelClass):
         c9 = keras.layers.Conv2D(self.first_filter_size, self.kernel_size, activation=self.activation,
                                  kernel_initializer=self.kernel_initializer, kernel_regularizer=self.kernel_regularizer,
                                  bias_regularizer=self.bias_regularizer)(c9)
-        c9 = keras.layers.Dropout(0.1)(c9)
+        c9 = keras.layers.Dropout(self.dropout)(c9)
         c9 = Padding2D("SymPad2D")(padding=pad_size)(c9)
         c9 = keras.layers.Conv2D(self.first_filter_size, self.kernel_size, activation=self.activation,
                                  kernel_initializer=self.kernel_initializer, name='c9',
@@ -714,6 +714,7 @@ class MyUnet(AbstractModelClass):
 
         # outputs = keras.layers.Conv2D(1, (1, 1), activation='sigmoid')(c9)
         dl = keras.layers.Flatten()(c9)
+        dl = keras.layers.Dropout(self.dropout)(dl)
         outputs = keras.layers.Dense(units=self._output_shape)(dl)
 
         self.model = keras.Model(inputs=[input_train], outputs=[outputs])
diff --git a/mlair/run_modules/post_processing.py b/mlair/run_modules/post_processing.py
index 8be9373d54d3bbd2e8a59f43355039735a3fbccc..c38d92f68dd2e0515016aa4eb7bf4db8475cc4ca 100644
--- a/mlair/run_modules/post_processing.py
+++ b/mlair/run_modules/post_processing.py
@@ -112,7 +112,11 @@ class PostProcessing(RunEnvironment):
         # forecasts on test data
         self.make_prediction(self.test_data)
         self.make_prediction(self.train_val_data)
-
+        
+        # forecasts on train and val data
+        self.make_prediction(self.train_data)
+        self.make_prediction(self.val_data)
+        
         # calculate error metrics on test data
         self.calculate_test_score()
 
diff --git a/run_wrf_dh_sector.py b/run_wrf_dh_sector.py
index ff7545088c7239a264e96e30c8e3ccfad18985b1..a2bb42025d09452ea4e49d3dbd794f7a3c793e39 100644
--- a/run_wrf_dh_sector.py
+++ b/run_wrf_dh_sector.py
@@ -8,7 +8,7 @@ from mlair.workflows import DefaultWorkflow
 from mlair.helpers import remove_items
 from mlair.configuration.defaults import DEFAULT_PLOT_LIST
 
-from mlair.model_modules.model_class import IntelliO3TsArchitecture, MyLSTMModel, MyCNNModel, MyCNNModelSect, MyLuongAttentionLSTMModel
+from mlair.model_modules.model_class import IntelliO3TsArchitecture, MyLSTMModel, MyCNNModel, MyCNNModelSect, MyLuongAttentionLSTMModel, MyUnet
 
 import os
 
@@ -16,7 +16,6 @@ import os
 def load_stations():
     import json
     try:
-        filename = 'supplement/station_list_north_german_plain_rural.json'
         filename = 'supplement/WRF_coord_list_from_IntelliO3.json'
         with open(filename, 'r') as jfile:
             stations = json.load(jfile)
@@ -26,40 +25,24 @@ def load_stations():
 
 
 def main(parser_args):
-    plots = remove_items(DEFAULT_PLOT_LIST, "PlotConditionalQuantiles")
+    do_not_plot = ["PlotDataHistogram", "PlotAvailability"]
+    plots = remove_items(DEFAULT_PLOT_LIST, do_not_plot)
     workflow = DefaultWorkflow(  stations=load_stations(),
-        # stations=["DEBW087","DEBW013", "DEBW107",  "DEBW076"],
         lazy_preprocessing=False,
         train_model=False, create_new_model=True, network="UBA",
-        evaluate_bootstraps=False,  # plot_list=["PlotCompetitiveSkillScore"],
-#         competitors=["test_model", "test_model2"],
-#         competitor_path=os.path.join(os.getcwd(), "data", "comp_test"),
-        competitors=["baseline", "sector_baseline"],
-        competitor_path="/p/scratch/deepacf/kleinert1/IASS_proc_monthyl/competitors/o3",
+        evaluate_feature_importance=False,
+        feature_importance_bootstrap_type="group_of_variables",
+        feature_importance_create_new_bootstraps=False,
+        feature_importance_bootstrap_method="zero_mean",
+        plot_list=plots,
+        #competitors=["NNb", "NN1s"],
+        #competitor_path="/p/scratch/deepacf/kleinert1/IASS_proc_monthyl/competitors/o3",
+        uncertainty_estimate_block_length="7d",
         train_min_length=1, val_min_length=1, test_min_length=1,
-        # data_handler=DataHandlerSingleStation,
-        # data_handler=DataHandlerSingleGridColumn,
-        epochs=100,
+        epochs=300,
         window_lead_time=4,
         window_history_size=6,
-#        stations=["coords__48_8479__10_0963", "coords__51_8376__14_1417",
-#                  "coords__50_7536__7_0827", "coords__51_4070__6_9656",
-#                  "coords__49_8421__7_8662", "coords__49_7410__7_1935",
-#                  "coords__51_1566__11_8182", "coords__51_4065__6_9660",
-#                  "coords__50_7333__7_1000", "coords__50_0000__8_0000",
-#                  "coords__48_7444__7_6000", "coords__51_0000__11_0000",
-#                  "coords__52_7555__8_1000", "coords__50_0000__2_0000",
-#                  "coords__51_7666__8_6000", "coords__50_0000__3_0000",
-#                  "coords__45_7777__9_1000", "coords__50_0000__4_0000",
-#                  ],
-#         data_handler=DataHandlerWRF,
         data_handler=DataHandlerMainSectWRF, #,
-        # data_path="/p/scratch/deepacf/kleinert1/IASS_proc_monthyl",
-        #data_path="/p/scratch/deepacf/kleinert1/IASS_proc",
-        #data_path="/p/project/deepacf/intelliaq/kleinert1/DATA/WRF_CHEM_soft_ln_small_test",
-        # data_path="/media/felix/INTENSO/WRF_CHEM/hourly/cdo_output_test/jan_test",
-        # data_path="/p/scratch/deepacf/intelliaq/kleinert1/IASS_proc_monthly/monthly2009",
-        # data_path="/p/scratch/deepacf/intelliaq/kleinert1/IASS_proc_monthly/monthly_count_test", 
         data_path = "/p/scratch/deepacf/intelliaq/kleinert1/IASS_proc_monthly/monthly2009_2010-03", 
         #data_path="/p/scratch/deepacf/intelliaq/kleinert1/IASS_proc_monthly/monthly_01-03",
         common_file_starter="wrfout_d01",
@@ -83,13 +66,15 @@ def main(parser_args):
             # 'CLDFRA': {"method": "min_max", "min": 0., "max": 1.},
         },
         # variables=['T2', 'o3', 'wdir10ll', 'wspd10ll', 'no', 'no2', 'co', 'PSFC', 'PBLH', 'CLDFRA'],
-        variables=['T2', 'o3', 'wdir10ll', 'wspd10ll', 'no', 'no2', 'co', 'PSFC', 'PBLH'],
+        variables=['T2', 'o3', 'wdir10ll', 'wspd10ll', 'no', 'no2', 'co', 'PSFC', 'PBLH', 'Q2'],
         target_var='o3',
+        target_var_unit="ppb",
+        vars_for_unit_conv={'o3': 'ppbv'},
         # statistics_per_var={'T2': None, 'o3': None, 'wdir10ll': None, 'wspd10ll': None,
         #                     'no': None, 'no2': None, 'co': None, 'PSFC': None, 'PBLH': None, 'CLDFRA': None, },
         statistics_per_var={'T2': "average_values", 'o3': "dma8eu", 'wdir10ll': "average_values",
                             'wspd10ll': "average_values", 'no': "dma8eu", 'no2': "dma8eu", 'co': "dma8eu",
-                            'PSFC': "average_values", 'PBLH': "average_values",
+                            'PSFC': "average_values", 'PBLH': "average_values", 'Q2':"average_values", 
                             # 'CLDFRA': "average_values",
                             },
         # variables=['T2', 'Q2', 'PBLH', 'U10ll', 'V10ll', 'wdir10ll', 'wspd10ll'],
@@ -141,11 +126,8 @@ def main(parser_args):
         
         batch_size=64*2*2,
         interpolation_limit=0,
-        as_image_like_data_format=False,
-#         model=MyLSTMModel,
-          model=MyLuongAttentionLSTMModel,
-#         model=MyCNNModelSect,
-#        model=MyCNNModel,
+        as_image_like_data_format=True,
+        model=MyUnet,
 
         **parser_args.__dict__)
     workflow.run()
diff --git a/run_wrfdh_sector3_hdfml.bash b/run_wrfdh_sector3_hdfml.bash
index e73380cfbded22fd23b93578d6bf861a2990d1b9..dc781d3440a0000e313b980c38584ca65dd95695 100644
--- a/run_wrfdh_sector3_hdfml.bash
+++ b/run_wrfdh_sector3_hdfml.bash
@@ -3,7 +3,7 @@
 #SBATCH --nodes=1
 #SBATCH --output=HPC_logging/mlt-out.%j
 #SBATCH --error=HPC_logging/mlt-err.%j
-#SBATCH --time=06:00:00 
+#SBATCH --time=24:00:00 
 #SBATCH --gres=gpu:4
 #SBATCH --mail-type=ALL
 #SBATCH --mail-user=f.kleinert@fz-juelich.de
@@ -13,6 +13,6 @@ source venv_hdfml/bin/activate
 
 timestamp=`date +"%Y-%m-%d_%H%M-%S"`
 
-export PYTHONPATH=${PWD}/venv_hdfml/lib/python3.6/site-packages:${PYTHONPATH}
+export PYTHONPATH=${PWD}/venv_hdfml/lib/python3.8/site-packages:${PYTHONPATH}
 
-srun --cpu-bind=none python run_wrf_dh_sector3.py --experiment_date=${timestamp}_WRF_sector
+srun --cpu-bind=none python run_wrf_dh_sector3.py --experiment_date=${timestamp}_WRF_sector3