diff --git a/mlair/model_modules/fully_connected_networks.py b/mlair/model_modules/fully_connected_networks.py index 313fc837825e108b877b8a48856a26667211764a..940c9846bbaff1a3e3664169cf46de4f177169bc 100644 --- a/mlair/model_modules/fully_connected_networks.py +++ b/mlair/model_modules/fully_connected_networks.py @@ -1,7 +1,7 @@ __author__ = "Lukas Leufen" __date__ = '2021-02-' -from functools import reduce +from functools import reduce, partial from mlair.model_modules import AbstractModelClass from mlair.helpers import select_from_dict @@ -62,8 +62,8 @@ class FCN(AbstractModelClass): on the window_lead_time parameter. """ - _activation = {"relu": keras.layers.ReLU(), "tanh": keras.layers.Activation("tanh"), - "sigmoid": keras.layers.Activation("sigmoid")} + _activation = {"relu": keras.layers.ReLU, "tanh": partial(keras.layers.Activation, "tanh"), + "sigmoid": partial(keras.layers.Activation, "sigmoid")} _optimizer = {"adam": keras.optimizers.adam, "sgd": keras.optimizers.SGD} _requirements = ["lr", "beta_1", "beta_2", "epsilon", "decay", "amsgrad", "momentum", "nesterov"] @@ -125,9 +125,9 @@ class FCN(AbstractModelClass): n_layer, n_hidden = self.layer_configuration for layer in range(n_layer): x_in = keras.layers.Dense(n_hidden)(x_in) - x_in = self.activation(x_in) + x_in = self.activation()(x_in) x_in = keras.layers.Dense(self._output_shape)(x_in) - out = self.activation(x_in) + out = self.activation()(x_in) self.model = keras.Model(inputs=x_input, outputs=[out]) def set_compile_options(self):