diff --git a/src/data_handling/data_preparation.py b/src/data_handling/data_preparation.py index f2c27c6c4c5dda27236c5c5b3bf8e59e776862a1..70722b1f2e3a4521a26c3eda46104bfb481fecf1 100644 --- a/src/data_handling/data_preparation.py +++ b/src/data_handling/data_preparation.py @@ -25,6 +25,387 @@ num_or_list = Union[number, List[number]] data_or_none = Union[xr.DataArray, None] +class AbstractStationPrep(): + def __init__(self, path, station, statistics_per_var, **kwargs): + # passed parameters + self.path = os.path.abspath(path) + self.station = helpers.to_list(station) + self.statistics_per_var = statistics_per_var + # self.target_dim = 'variable' + self.kwargs = kwargs + + # internal + self.data = None + self.meta = None + self.variables = kwargs.get('variables', list(statistics_per_var.keys())) + self.history = None + self.label = None + self.observation = None + + def load_data(self): + try: + self.read_data_from_disk() + except FileNotFoundError: + self.download_data() + self.load_data() + + def read_data_from_disk(self): + raise NotImplementedError + + def download_data(self): + raise NotImplementedError + + def check_for_negative_concentrations(self, data: xr.DataArray, minimum: int = 0) -> xr.DataArray: + """ + Set all negative concentrations to zero. + + Names of all concentrations are extracted from https://join.fz-juelich.de/services/rest/surfacedata/ + #2.1 Parameters. Currently, this check is applied on "benzene", "ch4", "co", "ethane", "no", "no2", "nox", + "o3", "ox", "pm1", "pm10", "pm2p5", "propane", "so2", and "toluene". + + :param data: data array containing variables to check + :param minimum: minimum value, by default this should be 0 + + :return: corrected data + """ + chem_vars = ["benzene", "ch4", "co", "ethane", "no", "no2", "nox", "o3", "ox", "pm1", "pm10", "pm2p5", + "propane", "so2", "toluene"] + used_chem_vars = list(set(chem_vars) & set(self.variables)) + data.loc[..., used_chem_vars] = data.loc[..., used_chem_vars].clip(min=minimum) + return data + + def shift(self, dim: str, window: int) -> xr.DataArray: + """ + Shift data multiple times to represent history (if window <= 0) or lead time (if window > 0). + + :param dim: dimension along shift is applied + :param window: number of steps to shift (corresponds to the window length) + + :return: shifted data + """ + start = 1 + end = 1 + if window <= 0: + start = window + else: + end = window + 1 + res = [] + for w in range(start, end): + res.append(self.data.shift({dim: -w})) + window_array = self.create_index_array('window', range(start, end), squeeze_dim=self.target_dim) + res = xr.concat(res, dim=window_array) + return res + + @staticmethod + def create_index_array(index_name: str, index_value: Iterable[int], squeeze_dim: str) -> xr.DataArray: + """ + Create an 1D xr.DataArray with given index name and value. + + :param index_name: name of dimension + :param index_value: values of this dimension + + :return: this array + """ + ind = pd.DataFrame({'val': index_value}, index=index_value) + # res = xr.Dataset.from_dataframe(ind).to_array().rename({'index': index_name}).squeeze(dim=squeez/e_dim, drop=True) + res = xr.Dataset.from_dataframe(ind).to_array(squeeze_dim).rename({'index': index_name}).squeeze( + dim=squeeze_dim, + drop=True + ) + res.name = index_name + return res + + def _set_file_name(self): + all_vars = sorted(self.statistics_per_var.keys()) + return os.path.join(self.path, f"{''.join(self.station)}_{'_'.join(all_vars)}.nc") + + def _set_meta_file_name(self): + all_vars = sorted(self.statistics_per_var.keys()) + return os.path.join(self.path, f"{''.join(self.station)}_{'_'.join(all_vars)}_meta.csv") + + def interpolate(self, dim: str, method: str = 'linear', limit: int = None, use_coordinate: Union[bool, str] = True, + **kwargs): + """ + Interpolate values according to different methods. + + (Copy paste from dataarray.interpolate_na) + + :param dim: + Specifies the dimension along which to interpolate. + :param method: + {'linear', 'nearest', 'zero', 'slinear', 'quadratic', 'cubic', + 'polynomial', 'barycentric', 'krog', 'pchip', + 'spline', 'akima'}, optional + String indicating which method to use for interpolation: + + - 'linear': linear interpolation (Default). Additional keyword + arguments are passed to ``numpy.interp`` + - 'nearest', 'zero', 'slinear', 'quadratic', 'cubic', + 'polynomial': are passed to ``scipy.interpolate.interp1d``. If + method=='polynomial', the ``order`` keyword argument must also be + provided. + - 'barycentric', 'krog', 'pchip', 'spline', and `akima`: use their + respective``scipy.interpolate`` classes. + :param limit: + default None + Maximum number of consecutive NaNs to fill. Must be greater than 0 + or None for no limit. + :param use_coordinate: + default True + Specifies which index to use as the x values in the interpolation + formulated as `y = f(x)`. If False, values are treated as if + eqaully-spaced along `dim`. If True, the IndexVariable `dim` is + used. If use_coordinate is a string, it specifies the name of a + coordinate variariable to use as the index. + :param kwargs: + + :return: xarray.DataArray + """ + self.data = self.data.interpolate_na(dim=dim, method=method, limit=limit, use_coordinate=use_coordinate, + **kwargs) + + def make_history_window(self, dim_name_of_inputs: str, window: int, dim_name_of_shift: str) -> None: + """ + Create a xr.DataArray containing history data. + + Shift the data window+1 times and return a xarray which has a new dimension 'window' containing the shifted + data. This is used to represent history in the data. Results are stored in history attribute. + + :param dim_name_of_inputs: Name of dimension which contains the input variables + :param window: number of time steps to look back in history + Note: window will be treated as negative value. This should be in agreement with looking back on + a time line. Nonetheless positive values are allowed but they are converted to its negative + expression + :param dim_name_of_shift: Dimension along shift will be applied + """ + window = -abs(window) + self.history = self.shift(dim_name_of_shift, window).sel({dim_name_of_inputs: self.variables}) + + def make_labels(self, dim_name_of_target: str, target_var: str_or_list, dim_name_of_shift: str, + window: int) -> None: + """ + Create a xr.DataArray containing labels. + + Labels are defined as the consecutive target values (t+1, ...t+n) following the current time step t. Set label + attribute. + + :param dim_name_of_target: Name of dimension which contains the target variable + :param target_var: Name of target variable in 'dimension' + :param dim_name_of_shift: Name of dimension on which xarray.DataArray.shift will be applied + :param window: lead time of label + """ + window = abs(window) + self.label = self.shift(dim_name_of_shift, window).sel({dim_name_of_target: target_var}) + + def make_observation(self, dim_name_of_target: str, target_var: str_or_list, dim_name_of_shift: str) -> None: + """ + Create a xr.DataArray containing observations. + + Observations are defined as value of the current time step t. Set observation attribute. + + :param dim_name_of_target: Name of dimension which contains the observation variable + :param target_var: Name of observation variable(s) in 'dimension' + :param dim_name_of_shift: Name of dimension on which xarray.DataArray.shift will be applied + """ + self.observation = self.shift(dim_name_of_shift, 0).sel({dim_name_of_target: target_var}) + + def remove_nan(self, dim: str) -> None: + """ + Remove all NAs slices along dim which contain nans in history, label and observation. + + This is done to present only a full matrix to keras.fit. Update history, label, and observation attribute. + + :param dim: dimension along the remove is performed. + """ + intersect = [] + if (self.history is not None) and (self.label is not None): + non_nan_history = self.history.dropna(dim=dim) + non_nan_label = self.label.dropna(dim=dim) + non_nan_observation = self.observation.dropna(dim=dim) + intersect = reduce(np.intersect1d, (non_nan_history.coords[dim].values, non_nan_label.coords[dim].values, + non_nan_observation.coords[dim].values)) + + min_length = self.kwargs.get("min_length", 0) + if len(intersect) < max(min_length, 1): + self.history = None + self.label = None + self.observation = None + else: + self.history = self.history.sel({dim: intersect}) + self.label = self.label.sel({dim: intersect}) + self.observation = self.observation.sel({dim: intersect}) + + def _slice_prep(self, data: xr.DataArray, coord: str = 'datetime') -> xr.DataArray: + """ + Set start and end date for slicing and execute self._slice(). + + :param data: data to slice + :param coord: name of axis to slice + + :return: sliced data + """ + start = self.kwargs.get('start', data.coords[coord][0].values) + end = self.kwargs.get('end', data.coords[coord][-1].values) + return self._slice(data, start, end, coord) + + @staticmethod + def _slice(data: xr.DataArray, start: Union[date, str], end: Union[date, str], coord: str) -> xr.DataArray: + """ + Slice through a given data_item (for example select only values of 2011). + + :param data: data to slice + :param start: start date of slice + :param end: end date of slice + :param coord: name of axis to slice + + :return: sliced data + """ + return data.loc[{coord: slice(str(start), str(end))}] + + def check_for_negative_concentrations(self, data: xr.DataArray, minimum: int = 0) -> xr.DataArray: + """ + Set all negative concentrations to zero. + + Names of all concentrations are extracted from https://join.fz-juelich.de/services/rest/surfacedata/ + #2.1 Parameters. Currently, this check is applied on "benzene", "ch4", "co", "ethane", "no", "no2", "nox", + "o3", "ox", "pm1", "pm10", "pm2p5", "propane", "so2", and "toluene". + + :param data: data array containing variables to check + :param minimum: minimum value, by default this should be 0 + + :return: corrected data + """ + chem_vars = ["benzene", "ch4", "co", "ethane", "no", "no2", "nox", "o3", "ox", "pm1", "pm10", "pm2p5", + "propane", "so2", "toluene"] + used_chem_vars = list(set(chem_vars) & set(self.variables)) + data.loc[..., used_chem_vars] = data.loc[..., used_chem_vars].clip(min=minimum) + return data + + +class StationPrep(AbstractStationPrep): + + def __init__(self, path, station, statistics_per_var, station_type, network, sampling, target_dim, target_var, + interpolate_dim, window_history_size, window_lead_time, **kwargs): + super().__init__(path, station, statistics_per_var, **kwargs) + self.station_type = station_type + self.network = network + self.sampling = sampling + self.target_dim = target_dim + self.target_var = target_var + self.interpolate_dim = interpolate_dim + self.window_history_size = window_history_size + self.window_lead_time = window_lead_time + self.make_samples() + + def get_transposed_history(self) -> xr.DataArray: + """Return history. + + :return: history with dimensions datetime, window, Stations, variables. + """ + return self.history.transpose("datetime", "window", "Stations", "variables").copy() + + def get_transposed_label(self) -> xr.DataArray: + """Return label. + + :return: label with dimensions datetime, window, Stations, variables. + """ + return self.label.squeeze("Stations").transpose("datetime", "window").copy() + + def get_x(self): + return self.get_transposed_history() + + def get_y(self): + return self.get_transposed_label() + + def make_samples(self): + self.load_data() + self.make_history_window(self.target_dim, self.window_history_size, self.interpolate_dim) + self.make_labels(self.target_dim, self.target_var, self.interpolate_dim, self.window_lead_time) + self.make_observation(self.target_dim, self.target_var, self.interpolate_dim) + self.remove_nan(self.interpolate_dim) + + def read_data_from_disk(self, source_name=""): + """ + Load data and meta data either from local disk (preferred) or download new data by using a custom download method. + + Data is either downloaded, if no local data is available or parameter overwrite_local_data is true. In both + cases, downloaded data is only stored locally if store_data_locally is not disabled. If this parameter is not + set, it is assumed, that data should be saved locally. + """ + source_name = source_name if len(source_name) == 0 else f" from {source_name}" + check_path_and_create(self.path) + file_name = self._set_file_name() + meta_file = self._set_meta_file_name() + if self.kwargs.get('overwrite_local_data', False): + logging.debug(f"overwrite_local_data is true, therefore reload {file_name}{source_name}") + if os.path.exists(file_name): + os.remove(file_name) + if os.path.exists(meta_file): + os.remove(meta_file) + data, self.meta = self.download_data(file_name, meta_file) + logging.debug(f"loaded new data{source_name}") + else: + try: + logging.debug(f"try to load local data from: {file_name}") + data = xr.open_dataarray(file_name) + self.meta = pd.read_csv(meta_file, index_col=0) + self.check_station_meta() + logging.debug("loading finished") + except FileNotFoundError as e: + logging.debug(e) + logging.debug(f"load new data{source_name}") + data, self.meta = self.download_data(file_name, meta_file) + logging.debug("loading finished") + # create slices and check for negative concentration. + data = self._slice_prep(data) + self.data = self.check_for_negative_concentrations(data) + + def download_data_from_join(self, file_name: str, meta_file: str) -> [xr.DataArray, pd.DataFrame]: + """ + Download data from TOAR database using the JOIN interface. + + Data is transformed to a xarray dataset. If class attribute store_data_locally is true, data is additionally + stored locally using given names for file and meta file. + + :param file_name: name of file to save data to (containing full path) + :param meta_file: name of the meta data file (also containing full path) + + :return: downloaded data and its meta data + """ + df_all = {} + df, meta = join.download_join(station_name=self.station, stat_var=self.statistics_per_var, + station_type=self.station_type, network_name=self.network, sampling=self.sampling) + df_all[self.station[0]] = df + # convert df_all to xarray + xarr = {k: xr.DataArray(v, dims=['datetime', 'variables']) for k, v in df_all.items()} + xarr = xr.Dataset(xarr).to_array(dim='Stations') + if self.kwargs.get('store_data_locally', True): + # save locally as nc/csv file + xarr.to_netcdf(path=file_name) + meta.to_csv(meta_file) + return xarr, meta + + def download_data(self, file_name, meta_file): + data, meta = self.download_data_from_join(file_name, meta_file) + return data, meta + + def check_station_meta(self): + """ + Search for the entries in meta data and compare the value with the requested values. + + Will raise a FileNotFoundError if the values mismatch. + """ + if self.station_type is not None: + check_dict = {"station_type": self.station_type, "network_name": self.network} + for (k, v) in check_dict.items(): + if v is None: + continue + if self.meta.at[k, self.station[0]] != v: + logging.debug(f"meta data does not agree with given request for {k}: {v} (requested) != " + f"{self.meta.at[k, self.station[0]]} (local). Raise FileNotFoundError to trigger new " + f"grapping from web.") + raise FileNotFoundError + class AbstractDataPrep(object): """ This class prepares data to be used in neural networks. @@ -554,5 +935,13 @@ class AbstractDataPrep(object): if __name__ == "__main__": - dp = AbstractDataPrep('data/', 'dummy', 'DEBW107', ['o3', 'temp'], statistics_per_var={'o3': 'dma8eu', 'temp': 'maximum'}) - print(dp) + # dp = AbstractDataPrep('data/', 'dummy', 'DEBW107', ['o3', 'temp'], statistics_per_var={'o3': 'dma8eu', 'temp': 'maximum'}) + # print(dp) + statistics_per_var = {'o3': 'dma8eu', 'temp-rea-miub': 'maximum'} + sp = StationPrep(path='/home/felix/PycharmProjects/mlt_new/data/', station='DEBY122', + statistics_per_var=statistics_per_var, station_type='background', + network='UBA', sampling='daily', target_dim='variables', target_var='o3', + interpolate_dim='datetime', window_history_size=7, window_lead_time=3) + sp.load_data() + sp.download_data('newfile.nc', 'new_meta.csv') + print(sp)