diff --git a/mlair/helpers/statistics.py b/mlair/helpers/statistics.py index b63cbe801abd9f0d325a689a959bc494ad1b4485..2f47bac598c89b3f40eee62b5010c76f54f21346 100644 --- a/mlair/helpers/statistics.py +++ b/mlair/helpers/statistics.py @@ -355,10 +355,7 @@ class SkillScores: :return: all CASES as well as all terms """ - if self.external_data is None: - ahead_names = [] - else: - ahead_names = list(self.external_data[self.ahead_dim].data) + ahead_names = list(internal_data[self.ahead_dim].data) all_terms = ['AI', 'AII', 'AIII', 'AIV', 'BI', 'BII', 'BIV', 'CI', 'CIV', 'CASE I', 'CASE II', 'CASE III', 'CASE IV'] diff --git a/mlair/plotting/postprocessing_plotting.py b/mlair/plotting/postprocessing_plotting.py index 6801addb7276d2638f44dd29fd7d521f6efa46a5..55f74a1e943ad7ab3c56ebaa74e8ca038e3ced69 100644 --- a/mlair/plotting/postprocessing_plotting.py +++ b/mlair/plotting/postprocessing_plotting.py @@ -121,7 +121,9 @@ class PlotOversamplingContingency(AbstractPlotClass): def _min_max_threshold(self): min_threshold = 0 max_threshold = 0 + logging.info("min_max thresholds") for station in self._stations: + logging.info(f"{station}") file = os.path.join(self._file_path, self._file_name % station) forecast_file = xr.open_dataarray(file) obs = forecast_file.sel(type=self._obs_name) @@ -139,17 +141,23 @@ class PlotOversamplingContingency(AbstractPlotClass): for station in self._stations: file = os.path.join(self._file_path, self._file_name % station) forecast_file = xr.open_dataarray(file) + logging.info(f"{station}: load obs") obs = forecast_file.sel(type=self._obs_name) + logging.info(f"{station}: load pred") predictions = [forecast_file.sel(type=self._model_name)] + logging.info(f"{station}: load comp") competitors = [self._load_competitors(station, [comp]).sel(type=comp) for comp in self._comp_names] predictions.extend(competitors) + logging.info(f"itearate over thresholds") for threshold in range(self._min_threshold, self._max_threshold): - for pred in predictions: + for i, pred in enumerate(predictions): + logging.info(i) ta, fa, fb, tb = self._single_contingency(obs, pred, threshold) contingency_array.loc[dict(thresholds=threshold, contingency_cell="ta", type=pred.type.values)] = ta contingency_array.loc[dict(thresholds=threshold, contingency_cell="fa", type=pred.type.values)] = fa contingency_array.loc[dict(thresholds=threshold, contingency_cell="fb", type=pred.type.values)] = fb contingency_array.loc[dict(thresholds=threshold, contingency_cell="tb", type=pred.type.values)] = tb + logging.info(f"{station}: finished") return contingency_array def _single_contingency(self, obs, pred, threshold):