diff --git a/mlair/model_modules/convolutional_networks.py b/mlair/model_modules/convolutional_networks.py index 5146fe529ef01aabc2440581198d37d0d2ab6a4b..2d8fd9e2fe4292ef7989d932d9b7d4fc9fbe756d 100644 --- a/mlair/model_modules/convolutional_networks.py +++ b/mlair/model_modules/convolutional_networks.py @@ -83,17 +83,15 @@ class CNN(AbstractModelClass): """ x_input = keras.layers.Input(shape=self._input_shape) kernel = (self.kernel_size, 1) - pad_size = PadUtils.get_padding_for_same(kernel) - x_in = Padding2D("SymPad2D")(padding=pad_size, name="SymPad1")(x_input) x_in = keras.layers.Conv2D(filters=16, kernel_size=kernel, kernel_initializer=self.kernel_initializer, - kernel_regularizer=self.kernel_regularizer)(x_in) + kernel_regularizer=self.kernel_regularizer)(x_input) x_in = self.activation()(x_in) x_in = keras.layers.Conv2D(filters=32, kernel_size=kernel, kernel_initializer=self.kernel_initializer, kernel_regularizer=self.kernel_regularizer)(x_in) - x_in = keras.layers.MaxPooling2D(kernel, strides=(1, 1), padding='valid')(x_in) x_in = self.activation()(x_in) + x_in = keras.layers.MaxPooling2D(kernel, strides=(1, 1), padding='valid')(x_in) x_in = keras.layers.Conv2D(filters=64, kernel_size=kernel, kernel_initializer=self.kernel_initializer, kernel_regularizer=self.kernel_regularizer)(x_in)