diff --git a/requirements.txt b/requirements.txt index 270c084865fbff00e6346b5f267c8d939a1d9902..9ccd09ef9234bafff4559aa9fc325bef7d8bf3ea 100644 --- a/requirements.txt +++ b/requirements.txt @@ -22,4 +22,5 @@ pyproj shapely cartopy==0.16.0 matplotlib -pillow \ No newline at end of file +pillow +scipy \ No newline at end of file diff --git a/src/plotting/postprocessing_plotting.py b/src/plotting/postprocessing_plotting.py index eb3f7f8c058fae47c2703e6e53ee22bdc013f7a2..09402f0425748a09f637734455c26fdfd25ce071 100644 --- a/src/plotting/postprocessing_plotting.py +++ b/src/plotting/postprocessing_plotting.py @@ -221,3 +221,27 @@ def plot_conditional_quantiles(stations: list, plot_folder: str = ".", rolling_w pdf_pages.close() plt.close('all') logging.info(f"plot_conditional_quantiles() finished after {time}") + + +def plot_climatological_skill_score(d: xr.DataArray, plot_folder=".", score_only=True, extra_nametag="", modelsetup=""): + labels = [str(i) + 'd' for i in d.coords['ahead'].values] + fig, ax = plt.subplots() + if score_only: + d = d.loc[:, ['CASE I', 'CASE II', 'CASE III', 'CASE IV'], :] + lab_add = '' + else: + fig.set_size_inches(11.7, 8.27) + lab_add = 'terms and ' + d = d.to_dataframe('data').reset_index(level=[0, 1, 2]) + sns.boxplot(x='terms', y='data', hue='ahead', data=d, ax=ax, whis=1., palette="Blues_d", showmeans=True, + meanprops={'markersize': 1,' markeredgecolor': 'k'}, flierprops={'marker': '.'}) + ax.axhline(y=0, color='grey', linewidth=.5) + ax.set(ylabel=lab_add+'skill score', xlabel='', title='summary of all stations') + handles, _ = ax.get_legend_handles_labels() + ax.legend(handles, labels) + plt.tight_layout() + plt.savefig(plot_folder+'SS_Clim_summary_' + extra_nametag + modelsetup + '.pdf', dpi=500) + plt.close('all') + + return d + diff --git a/src/run_modules/post_processing.py b/src/run_modules/post_processing.py index d773c9789619c802f05f3d922d554fb1b246ffe0..ce6d719f9d51bad00b2aea9f75b4f4dcdd722fa7 100644 --- a/src/run_modules/post_processing.py +++ b/src/run_modules/post_processing.py @@ -10,6 +10,7 @@ import pandas as pd import xarray as xr import statsmodels.api as sm import keras +from scipy import stats from src.run_modules.run_environment import RunEnvironment from src.data_handling.data_distributor import Distributor @@ -33,6 +34,7 @@ class PostProcessing(RunEnvironment): self.test_data_distributed = Distributor(self.test_data, self.model, self.batch_size) self.train_data: DataGenerator = self.data_store.get("generator", "general.train") self.plot_path: str = self.data_store.get("plot_path", "general") + self.calculate_skill_scores() self._run() def _run(self): @@ -124,7 +126,7 @@ class PostProcessing(RunEnvironment): return nn_prediction_all_stations @staticmethod - def _create_orig_forecast(data, placeholder, mean, std, transformation_method): + def _create_orig_forecast(data, _, mean, std, transformation_method): return statistics.apply_inverse_transformation(data.label, mean, std, transformation_method) def _create_ols_forecast(self, input_data, ols_prediction, mean, std, transformation_method): @@ -195,4 +197,119 @@ class PostProcessing(RunEnvironment): res.loc[match_index, :, k] = v.sel({'datetime': match_index}).squeeze('Stations').transpose() return res + def calculate_skill_scores(self, threshold=60): + path = self.data_store.get("forecast_path", "general") + for station in self.test_data.stations: # TODO: replace this by a more general approach to also calculate on train/val + file = os.path.join(path, f"forecasts_{station}_test.nc") + data = xr.open_dataarray(file) + ss = SkillScores() + ss.skill_scores(data, station, 3) + + + # get scaling parameters + # mean, std, transformation_method = self.test_data.get_transformation_information(variable='o3') + # tmp_nn = statistics.apply_inverse_transformation(tmp_nn, mean, std, transformation_method) + + # self.test_data.get_data_generator(station).restandardise( + # self.get_data_generator(station).data.sel(variables=self.target_var).squeeze('Stations'), + # variables=self.target_var) + + +class SkillScores(RunEnvironment): + + def __init__(self): + super().__init__() + + def skill_scores(self, data, station_name, window_lead_time): + ahead_names = list(range(1, window_lead_time + 1)) + + all_terms_for_clim_deco = ['AI', 'AII', 'AIII', 'AIV', 'BI', 'BII', 'BIV', 'CI', 'CIV', 'CASE I', 'CASE II', + 'CASE III', 'CASE IV'] + ss_test_clim = xr.DataArray(np.full((len(all_terms_for_clim_deco), len(ahead_names)), np.nan), + coords=[all_terms_for_clim_deco, ahead_names], dims=['terms', 'ahead']) + + for iahead in ahead_names: + ss_test_clim.loc[["CASE I", "AI", "BI", "CI"], iahead] = np.stack(self.skill_score_on_mean_squared_error( + data.sel(ahead=iahead), mu_type=1, forecast_name="CNN").values.flatten()) + + ss_test_clim.loc[["CASE II", "AII", "BII"], iahead] = np.stack(self.skill_score_on_mean_squared_error( + data.sel(ahead=iahead), mu_type=2, forecast_name="CNN").values.flatten()) + + # external_climatology = data.sel(variables="orig") + # + # ss_test_clim.loc[["CASE III", "AIII"], iahead] = np.stack(self.skill_score_on_mean_squared_error( + # data.loc[: iahead, :], mu_type=3, forecast_name="CNN", external_data=external_climatology.mean() + # ).values.flatten()) + # + # ss_test_clim.loc[["CASE IV", "AIV", "BIV", "CIV"], iahead] = np.stack(self.skill_score_on_mean_squared_error( + # data.loc[: iahead, :], mu_type=4, forecast_name="CNN", external_data=external_climatology.rename({'datetime': 'index', + # 'variables': 'type', + # 'Stations': 'ahead'})).values.flatten()) + + def skill_score_on_mean_squared_error(self, data, mu_type=1, observation_name="orig", forecast_name="CNN", external_data=None): + kwargs = {"external_data": external_data} if external_data is not None else {} + return self.__getattribute__(f"skill_score_mu_case_{mu_type}")(data, observation_name, forecast_name, **kwargs) + + @staticmethod + def skill_score_pre_calculations(data, observation_name, forecast_name): + + data = data.loc[..., [observation_name, forecast_name]].drop("ahead") + data = data.dropna("index") + + mean = data.mean("index") + var = data.var("index") + r, p = stats.spearmanr(data.loc[..., [forecast_name, observation_name]]) + + AI = np.array(r ** 2) + BI = ((r - var.loc[..., forecast_name] / var.loc[..., observation_name]) ** 2).values + CI = (((mean.loc[..., forecast_name] - mean.loc[..., observation_name]) / var.loc[ + ..., observation_name]) ** 2).values + + return AI, BI, CI, data + + def skill_score_mu_case_1(self, data, observation_name="orig", forecast_name="CNN"): + AI, BI, CI, data = self.skill_score_pre_calculations(data, observation_name, forecast_name) + skill_score = np.array(AI - BI - CI) + return pd.DataFrame({"skill_score": [skill_score], "AI": [AI], "BI": [BI], "CI": [CI]}).to_xarray().to_array() + + def skill_score_mu_case_2(self, data, observation_name="orig", forecast_name="CNN"): + AI, BI, CI, data = self.skill_score_pre_calculations(data, observation_name, forecast_name) + monthly_mean = self.create_monthly_mean_from_daily_data(data) + data = xr.concat([data, monthly_mean], dim="type") + var = data.var("index") + r, p = stats.spearmanr(data.loc[..., [observation_name, observation_name + "X"]]) + AII = np.array(r ** 2) + BII = ((r - var.loc[observation_name + 'X'] / var.loc[observation_name]) ** 2).values + skill_score = np.array((AI - BI - CI - AII + BII) / (1 - AII + BII)) + return pd.DataFrame({"skill_score": [skill_score], "AII": [AII], "BII": [BII]}).to_xarray().to_array() + + def skill_score_mu_case_3(self, data, observation_name="orig", forecast_name="CNN"): + AI, BI, CI, data = self.skill_score_pre_calculations(data, observation_name, forecast_name) + pass + + def skill_score_mu_case_4(self, data, observation_name="orig", forecast_name="CNN"): + AI, BI, CI, data = self.skill_score_pre_calculations(data, observation_name, forecast_name) + pass + + @staticmethod + def create_monthly_mean_from_daily_data(data, external_data=None, internal_mean=True): + + coordinates = [data.index, [v + "X" for v in list(data.type.values)]] # TODO + empty_data = np.full((len(data.index), len(data.type)), np.nan) + monthly_mean = xr.DataArray(empty_data, coords=coordinates, dims=["index", "type"]) + if internal_mean: + mu = data.groupby("index.month").mean() + elif not internal_mean and isinstance(external_data, xr.DataArray): + mu = external_data.groupby("index.month").mean().drop("type").drop("ahead") + else: + raise AttributeError(f"Either choose internal_mean=True to calculate the internal mean or use internal_mean" + f"=False and isinstance(external_data, xarray.DataArray) to get the external mean " + f"depending on given external data. Given was internal_mean={internal_mean} and " + f"type(external_data)={type(external_data)} .") + + for month in mu.month: + monthly_mean[monthly_mean.index.dt.month == month, :] = mu[mu.month == month].values + + return monthly_mean +