From 527ddd38953581e49092975e68cde1faf18abcbd Mon Sep 17 00:00:00 2001 From: "v.gramlich1" <v.gramlichfz-juelich.de> Date: Wed, 4 Aug 2021 09:01:50 +0200 Subject: [PATCH] Made PlotOversamplingContingency get min and max_threshold --- mlair/plotting/postprocessing_plotting.py | 30 ++++++++++++++--------- 1 file changed, 19 insertions(+), 11 deletions(-) diff --git a/mlair/plotting/postprocessing_plotting.py b/mlair/plotting/postprocessing_plotting.py index a0d54c18..ed114830 100644 --- a/mlair/plotting/postprocessing_plotting.py +++ b/mlair/plotting/postprocessing_plotting.py @@ -48,11 +48,10 @@ class PlotOversamplingContingency(AbstractPlotClass): self._all_names = [self._model_name] self._all_names.extend(self._comp_names) self._plot_names = plot_names - contingency_array, borders = self._calculate_contingencies() + self._min_threshold, self._max_threshold = self._min_max_threshold() + contingency_array = self._calculate_contingencies() self._scores = ["ts", "h", "f"] score_array = self._calculate_all_scores(contingency_array) - self._min_label = borders[0] - self._max_label = borders[1] self._plot_counter = 0 self._plot(score_array, "ts") @@ -67,10 +66,10 @@ class PlotOversamplingContingency(AbstractPlotClass): def _plot(self, data, score): if score == "all_scores": for score_name in data.scores.values.tolist(): - plt.plot(range(self._min_label, self._max_label), data.loc[dict(type="nn", scores=score_name)], label=score_name) + plt.plot(range(self._min_threshold, self._max_threshold), data.loc[dict(type="nn", scores=score_name)], label=score_name) else: for type in data.type.values.tolist(): - plt.plot(range(self._min_label, self._max_label), data.loc[dict(type=type, scores=score)], label=type) + plt.plot(range(self._min_threshold, self._max_threshold), data.loc[dict(type=type, scores=score)], label=type) plt.legend() self.plot_name = self._plot_names[self._plot_counter] self._plot_counter = self._plot_counter + 1 @@ -116,11 +115,20 @@ class PlotOversamplingContingency(AbstractPlotClass): continue return xr.concat(competing_predictions, "type") if len(competing_predictions) > 0 else None + def _min_max_threshold(self): + min_threshold = 0 + max_threshold = 0 + for station in self._stations: + file = os.path.join(self._file_path, self._file_name % station) + forecast_file = xr.open_dataarray(file) + obs = forecast_file.sel(type=self._obs_name) + obs = obs.fillna(0) + min_threshold = np.minimum(min_threshold, int(np.min(obs.values.flatten()))) + max_threshold = np.maximum(max_threshold, int(np.max(obs.values.flatten()))) + return min_threshold, max_threshold + def _calculate_contingencies(self): - min_label = 0 - max_label = 100 - borders = [min_label, max_label] - thresholds = np.arange(min_label, max_label) + thresholds = np.arange(self._min_threshold, self._max_threshold) contingency_cell = ["ta", "fa", "fb", "tb"] contingency_array = xr.DataArray(dims=["thresholds", "contingency_cell", "type"], coords=[thresholds, contingency_cell, self._all_names]) @@ -132,14 +140,14 @@ class PlotOversamplingContingency(AbstractPlotClass): predictions = [forecast_file.sel(type=self._model_name)] competitors = [self._load_competitors(station, [comp]).sel(type=comp) for comp in self._comp_names] predictions.extend(competitors) - for threshold in range(min_label, max_label): + for threshold in range(self._min_threshold, self._max_threshold): for pred in predictions: ta, fa, fb, tb = self._single_contingency(obs, pred, threshold) contingency_array.loc[dict(thresholds=threshold, contingency_cell="ta", type=pred.type.values)] = ta contingency_array.loc[dict(thresholds=threshold, contingency_cell="fa", type=pred.type.values)] = fa contingency_array.loc[dict(thresholds=threshold, contingency_cell="fb", type=pred.type.values)] = fb contingency_array.loc[dict(thresholds=threshold, contingency_cell="tb", type=pred.type.values)] = tb - return contingency_array, borders + return contingency_array def _single_contingency(self, obs, pred, threshold): ta = 0 -- GitLab