diff --git a/test/test_configuration/test_defaults.py b/test/test_configuration/test_defaults.py index ae81ef2ef0a15ad08f14ad19312f04040ab71263..90227ed21e544feb90b3b426edc07e0283624177 100644 --- a/test/test_configuration/test_defaults.py +++ b/test/test_configuration/test_defaults.py @@ -36,9 +36,6 @@ class TestAllDefaults: assert DEFAULT_END == "2017-12-31" assert DEFAULT_WINDOW_HISTORY_SIZE == 13 assert DEFAULT_OVERWRITE_LOCAL_DATA is False - assert isinstance(DEFAULT_TRANSFORMATION, TransformationClass) - assert DEFAULT_TRANSFORMATION.inputs.transform_method == "standardise" - assert DEFAULT_TRANSFORMATION.targets.transform_method == "standardise" assert DEFAULT_TARGET_VAR == "o3" assert DEFAULT_TARGET_DIM == "variables" assert DEFAULT_WINDOW_LEAD_TIME == 3 diff --git a/test/test_helpers/test_statistics.py b/test/test_helpers/test_statistics.py index 76adc1bdd210e072b4fc9be717269c6ceb951fec..2e9b0db62d24edaaaff19eff590597f89b65ca2c 100644 --- a/test/test_helpers/test_statistics.py +++ b/test/test_helpers/test_statistics.py @@ -3,7 +3,6 @@ import pandas as pd import pytest import xarray as xr -from mlair.helpers.statistics import DataClass, TransformationClass from mlair.helpers.statistics import standardise, standardise_inverse, standardise_apply, centre, centre_inverse, \ centre_apply, \ apply_inverse_transformation @@ -72,7 +71,7 @@ class TestStandardise: (lazy('xarray'), 'index')]) def test_apply_standardise_inverse(self, data_orig, dim): mean, std, data = standardise(data_orig, dim) - data_recovered = apply_inverse_transformation(data, mean, std) + data_recovered = apply_inverse_transformation(data, "standardise", mean, std) assert np.testing.assert_array_almost_equal(data_orig, data_recovered) is None @pytest.mark.parametrize('data_orig, mean, std, dim', [(lazy('pandas'), lazy('pd_mean'), lazy('pd_std'), 0), @@ -106,7 +105,7 @@ class TestCentre: (lazy('xarray'), 'index')]) def test_apply_centre_inverse(self, data_orig, dim): mean, _, data = centre(data_orig, dim) - data_recovered = apply_inverse_transformation(data, mean, method="centre") + data_recovered = apply_inverse_transformation(data, mean=mean, method="centre") assert np.testing.assert_array_almost_equal(data_orig, data_recovered) is None @pytest.mark.parametrize('data_orig, mean, dim', [(lazy('pandas'), lazy('pd_mean'), 0), @@ -115,50 +114,3 @@ class TestCentre: data = centre_apply(data_orig, mean) mean_expected = np.array([2, -5, 10]) - np.array([2, 10, 3]) assert np.testing.assert_almost_equal(data.mean(dim), mean_expected, decimal=1) is None - - -class TestDataClass: - - def test_init(self): - dc = DataClass() - assert all([obj is None for obj in [dc.data, dc.mean, dc.std, dc.max, dc.min, dc.transform_method, dc._method]]) - - def test_init_values(self): - dc = DataClass(data=12, mean=2, std="test", max=23.4, min=np.array([3]), transform_method="f") - assert dc.data == 12 - assert dc.mean == 2 - assert dc.std == "test" - assert dc.max == 23.4 - assert np.testing.assert_array_equal(dc.min, np.array([3])) is None - assert dc.transform_method == "f" - assert dc._method is None - - def test_as_dict(self): - dc = DataClass(std=23) - dc._method = "f(x)" - assert dc.as_dict() == {"data": None, "mean": None, "std": 23, "max": None, "min": None, - "transform_method": None} - - -class TestTransformationClass: - - def test_init(self): - tc = TransformationClass() - assert hasattr(tc, "inputs") - assert isinstance(tc.inputs, DataClass) - assert hasattr(tc, "targets") - assert isinstance(tc.targets, DataClass) - assert tc.inputs.mean is None - assert tc.targets.std is None - - def test_init_values(self): - tc = TransformationClass(inputs_mean=1, inputs_std=2, inputs_method="f", targets_mean=3, targets_std=4, - targets_method="g") - assert tc.inputs.mean == 1 - assert tc.inputs.std == 2 - assert tc.inputs.transform_method == "f" - assert tc.inputs.max is None - assert tc.targets.mean == 3 - assert tc.targets.std == 4 - assert tc.targets.transform_method == "g" - assert tc.inputs.min is None