diff --git a/mlair/run_modules/post_processing.py b/mlair/run_modules/post_processing.py index cb3f938602164e624aaa6f7d43c0ad83c32e15c2..95120868d009bf111e333ce68c9c1405b0b96587 100644 --- a/mlair/run_modules/post_processing.py +++ b/mlair/run_modules/post_processing.py @@ -271,6 +271,7 @@ class PostProcessing(RunEnvironment): def store_crps_reports(df, report_path, subset, station=False): if station is True: file_name = f"crps_stations_{subset}.%s" + df = df.transpose() else: file_name = f"crps_summary_{subset}.%s" column_format = tables.create_column_format_for_tex(df) diff --git a/run_bnn.py b/run_bnn.py index 3baa8b15ffac73d63b0bc6b78e8539d159d63cff..d2e94b6f4cc454a14e01489cf6d540c68d5f5250 100644 --- a/run_bnn.py +++ b/run_bnn.py @@ -33,6 +33,16 @@ def main(parser_args): stats_per_var = {'o3': 'dma8eu', 'relhum': 'average_values', 'temp': 'maximum', 'u': 'average_values', 'v': 'average_values', 'no': 'dma8eu', 'no2': 'dma8eu', 'cloudcover': 'average_values', 'pblheight': 'maximum'} + transformation = {'o3': {'method': 'standardise'}, + 'relhum': {'method': 'min_max'}, + 'temp': {'method': 'standardise'}, + 'u': {'method': 'standardise'}, + 'v': {'method': 'standardise'}, + 'no': {'method': 'standardise'}, + 'no2': {'method': 'standardise'}, + 'cloudcover': {'method': 'min_max'}, + 'pblheight': {'method': 'standardise'} + } workflow = DefaultWorkflow( # stations=load_stations(), #stations=["DEBW087","DEBW013", "DEBW107", "DEBW076"], stations=load_stations(2), @@ -42,6 +52,7 @@ def main(parser_args): epochs=200, batch_size=512, #1024, permute_data_on_training=True, + transformation=transformation, train_model=False, create_new_model=True, network="UBA", evaluate_feature_importance=False, # plot_list=["PlotCompetitiveSkillScore"], competitors=["IntelliO3-ts"],#["test_model", "test_model2"],