diff --git a/README.md b/README.md index dc797a6fb2a4daecbc4e8ee8ae01868de8d1bf98..7692df4a049b8c8e6713fe6bc0cf1d25650e6446 100644 --- a/README.md +++ b/README.md @@ -15,7 +15,7 @@ We assume that you have downloaded or cloned the project from GitLab or * Make sure that CUDA 10.0 is installed if you want to use Nvidia GPUs (compatible with TensorFlow 1.13.1). Depending on your system (GPU available or not) you can create a virtual environment by executing -`python3 -m venv venv`. Make sure that the venv is activated (`source venv/bin/activate`). Afterwards +`python3.6 -m venv venv`. Make sure that the venv is activated (`source venv/bin/activate`). Afterwards you can install the requirements into the venv: * CPU version: `pip install -r requirements.txt` * GPU version: `pip install -r requirements_gpu.txt` diff --git a/run.py b/run.py index ebde68affbec45448fab452cffc962ca53b406ce..ec30d5d41a39932cb7c9b6eb4f94457d6518d4f9 100644 --- a/run.py +++ b/run.py @@ -17,7 +17,7 @@ from src.run_modules.training import Training def main(parser_args): - station_filename = "German_background_stations.json" # "German_stations.json" + station_filename = "German_background_stations.json" with open(station_filename) as jfile: stations = json.load(jfile) @@ -27,11 +27,11 @@ def main(parser_args): data_path=f"{os.getcwd()}/raw_input_IntelliO3-ts/", # hpc_hosts=["yo"], # stations=stations, - # stations=['DEBW107', 'DEBY081', 'DEBW013', 'DEBW076', 'DEBW087', 'DEBW001'], + evaluate_bootstraps=False, station_type='background', window_lead_time=4, window_history_size=6, trainable=False, create_new_model=False, permute_data_on_training=True, extreme_values=3., train_min_length=365, val_min_length=365, test_min_length=365, - create_new_bootstraps=True, + create_new_bootstraps=False, plot_list=["PlotMonthlySummary", "PlotStationMap", "PlotClimatologicalSkillScore", "PlotCompetitiveSkillScore", "PlotBootstrapSkillScore", "PlotConditionalQuantiles", "PlotAvailability"],