diff --git a/mlair/plotting/postprocessing_plotting.py b/mlair/plotting/postprocessing_plotting.py index bf73f1858aba4749cb9e949c6f3d7df48536083c..da477718b77ee2e2b8cb20580b77f2ec8c1c3b7c 100644 --- a/mlair/plotting/postprocessing_plotting.py +++ b/mlair/plotting/postprocessing_plotting.py @@ -145,15 +145,15 @@ class PlotOversamplingContingency(AbstractPlotClass): obs = forecast_file.sel(type=self._obs_name) logging.info(f"{station}: load pred") predictions = [forecast_file.sel(type=self._model_name)] - logging.info(f"{station}: load comp") + logging.info(f"{station}: load comp, comp_list:{self._comp_names}") for comp in self._comp_names: c = self._load_competitors(station, [comp]) if c is not None: + logging.info(f"{station}: {comp} is not None") predictions.append(c.sel(type=comp)) logging.info(f"itearate over thresholds") for threshold in range(self._min_threshold, self._max_threshold): - for i, pred in enumerate(predictions): - logging.info(i) + for pred in predictions: ta, fa, fb, tb = self._single_contingency(obs, pred, threshold) contingency_array.loc[dict(thresholds=threshold, contingency_cell="ta", type=pred.type.values)] = ta contingency_array.loc[dict(thresholds=threshold, contingency_cell="fa", type=pred.type.values)] = fa