diff --git a/test/test_model_modules/test_inception_model.py b/test/test_model_modules/test_inception_model.py index 01a58399affe56e8afad0b0c8d1da71506259522..fc1c6bb6aebe5bbd6d365a855fdc4ef872ba6655 100644 --- a/test/test_model_modules/test_inception_model.py +++ b/test/test_model_modules/test_inception_model.py @@ -2,37 +2,45 @@ import keras import pytest from src.model_modules.inception_model import InceptionModelBase +from src.model_modules.advanced_paddings import ReflectionPadding2D, SymmetricPadding2D class TestInceptionModelBase: @pytest.fixture def base(self): + # import keras return InceptionModelBase() @pytest.fixture def input_x(self): + # import keras return keras.Input(shape=(32, 32, 3)) @staticmethod def step_in(element, depth=1): + # import keras for _ in range(depth): element = element.input._keras_history[0] return element def test_init(self, base): + # import keras assert base.number_of_blocks == 0 assert base.part_of_block == 0 assert base.ord_base == 96 assert base.act_number == 0 def test_block_part_name(self, base): + # import keras assert base.block_part_name() == chr(96) base.part_of_block += 1 assert base.block_part_name() == 'a' def test_create_conv_tower_3x3(self, base, input_x): - opts = {'input_x': input_x, 'reduction_filter': 64, 'tower_filter': 32, 'tower_kernel': (3, 3)} + # import keras + opts = {'input_x': input_x, 'reduction_filter': 64, 'tower_filter': 32, 'tower_kernel': (3, 3), + 'padding': 'SymPad2D'} tower = base.create_conv_tower(**opts) # check last element of tower (activation) assert base.part_of_block == 1 @@ -48,8 +56,13 @@ class TestInceptionModelBase: assert conv_layer.kernel_size == (3, 3) assert conv_layer.strides == (1, 1) assert conv_layer.name == "Block_0a_3x3" + # check previous element of tower (padding) + pad_layer = self.step_in(conv_layer) + assert isinstance(pad_layer, SymmetricPadding2D) + assert pad_layer.padding == ((1, 1), (1, 1)) + assert pad_layer.name == 'Block_0a_Pad' # check previous element of tower (activation) - act_layer2 = self.step_in(conv_layer) + act_layer2 = self.step_in(pad_layer) assert isinstance(act_layer2, keras.layers.advanced_activations.ReLU) assert act_layer2.name == "Block_0a_act_1" # check previous element of tower (conv2D) @@ -57,11 +70,12 @@ class TestInceptionModelBase: assert isinstance(conv_layer2, keras.layers.Conv2D) assert conv_layer2.filters == 64 assert conv_layer2.kernel_size == (1, 1) - assert conv_layer2.padding == 'same' + assert conv_layer2.padding == 'valid' assert conv_layer2.name == 'Block_0a_1x1' assert conv_layer2.input._keras_shape == (None, 32, 32, 3) def test_create_conv_tower_3x3_activation(self, base, input_x): + # import keras opts = {'input_x': input_x, 'reduction_filter': 64, 'tower_filter': 32, 'tower_kernel': (3, 3)} # create tower with standard activation function tower = base.create_conv_tower(activation='tanh', **opts) @@ -77,6 +91,7 @@ class TestInceptionModelBase: assert act_layer.name == "Block_0b_act_2" def test_create_conv_tower_1x1(self, base, input_x): + # import keras opts = {'input_x': input_x, 'reduction_filter': 64, 'tower_filter': 32, 'tower_kernel': (1, 1)} tower = base.create_conv_tower(**opts) # check last element of tower (activation) @@ -96,6 +111,7 @@ class TestInceptionModelBase: assert conv_layer.input._keras_shape == (None, 32, 32, 3) def test_create_conv_towers(self, base, input_x): + # import keras opts = {'input_x': input_x, 'reduction_filter': 64, 'tower_filter': 32, 'tower_kernel': (3, 3)} _ = base.create_conv_tower(**opts) tower = base.create_conv_tower(**opts) @@ -103,10 +119,12 @@ class TestInceptionModelBase: assert tower.name == 'Block_0b_act_2_1/Relu:0' def test_create_pool_tower(self, base, input_x): + # import keras opts = {'input_x': input_x, 'pool_kernel': (3, 3), 'tower_filter': 32} tower = base.create_pool_tower(**opts) # check last element of tower (activation) assert base.part_of_block == 1 + # assert tower.name == 'Block_0a_act_1/Relu:0' assert tower.name == 'Block_0a_act_1_3/Relu:0' act_layer = tower._keras_history[0] assert isinstance(act_layer, keras.layers.advanced_activations.ReLU) @@ -124,7 +142,12 @@ class TestInceptionModelBase: assert isinstance(pool_layer, keras.layers.pooling.MaxPooling2D) assert pool_layer.name == "Block_0a_MaxPool" assert pool_layer.pool_size == (3, 3) - assert pool_layer.padding == 'same' + assert pool_layer.padding == 'valid' + # check previous element of tower(padding) + pad_layer = self.step_in(pool_layer) + assert isinstance(pad_layer, keras.layers.convolutional.ZeroPadding2D) + assert pad_layer.name == "Block_0a_Pad" + assert pad_layer.padding == ((1, 1), (1, 1)) # check avg pool tower opts = {'input_x': input_x, 'pool_kernel': (3, 3), 'tower_filter': 32} tower = base.create_pool_tower(max_pooling=False, **opts) @@ -132,12 +155,20 @@ class TestInceptionModelBase: assert isinstance(pool_layer, keras.layers.pooling.AveragePooling2D) assert pool_layer.name == "Block_0b_AvgPool" assert pool_layer.pool_size == (3, 3) - assert pool_layer.padding == 'same' + assert pool_layer.padding == 'valid' def test_inception_block(self, base, input_x): - conv = {'tower_1': {'reduction_filter': 64, 'tower_kernel': (3, 3), 'tower_filter': 64}, - 'tower_2': {'reduction_filter': 64, 'tower_kernel': (5, 5), 'tower_filter': 64, 'activation': 'tanh'}} - pool = {'pool_kernel': (3, 3), 'tower_filter': 64} + # import keras + conv = {'tower_1': {'reduction_filter': 64, + 'tower_kernel': (3, 3), + 'tower_filter': 64, }, + 'tower_2': {'reduction_filter': 64, + 'tower_kernel': (5, 5), + 'tower_filter': 64, + 'activation': 'tanh', + 'padding': 'SymPad2D', }, + } + pool = {'pool_kernel': (3, 3), 'tower_filter': 64, 'padding': ReflectionPadding2D} opts = {'input_x': input_x, 'tower_conv_parts': conv, 'tower_pool_parts': pool} block = base.inception_block(**opts) assert base.number_of_blocks == 1 @@ -150,8 +181,19 @@ class TestInceptionModelBase: assert block_pool2.name == 'Block_1d_act_1/Relu:0' assert self.step_in(block_1a._keras_history[0]).name == "Block_1a_3x3" assert self.step_in(block_1b._keras_history[0]).name == "Block_1b_5x5" + assert self.step_in(block_1a._keras_history[0], depth=2).name == 'Block_1a_Pad' + assert isinstance(self.step_in(block_1a._keras_history[0], depth=2), keras.layers.ZeroPadding2D) + assert self.step_in(block_1b._keras_history[0], depth=2).name == 'Block_1b_Pad' + assert isinstance(self.step_in(block_1b._keras_history[0], depth=2), SymmetricPadding2D) + # pooling assert isinstance(self.step_in(block_pool1._keras_history[0], depth=2), keras.layers.pooling.MaxPooling2D) + assert self.step_in(block_pool1._keras_history[0], depth=3).name == 'Block_1c_Pad' + assert isinstance(self.step_in(block_pool1._keras_history[0], depth=3), ReflectionPadding2D) + assert isinstance(self.step_in(block_pool2._keras_history[0], depth=2), keras.layers.pooling.AveragePooling2D) + assert self.step_in(block_pool2._keras_history[0], depth=3).name == 'Block_1d_Pad' + assert isinstance(self.step_in(block_pool2._keras_history[0], depth=3), ReflectionPadding2D) + # next block opts['input_x'] = block opts['tower_pool_parts']['max_pooling'] = True @@ -163,22 +205,71 @@ class TestInceptionModelBase: assert block_2a.name == 'Block_2a_act_2/Relu:0' assert block_2b.name == 'Block_2b_act_2_tanh/Tanh:0' assert block_pool.name == 'Block_2c_act_1/Relu:0' + # block 2a assert self.step_in(block_2a._keras_history[0]).name == "Block_2a_3x3" + assert self.step_in(block_2a._keras_history[0], depth=2).name == "Block_2a_Pad" + assert isinstance(self.step_in(block_2a._keras_history[0], depth=2), keras.layers.ZeroPadding2D) + # block 2b assert self.step_in(block_2b._keras_history[0]).name == "Block_2b_5x5" + assert self.step_in(block_2b._keras_history[0], depth=2).name == "Block_2b_Pad" + assert isinstance(self.step_in(block_2b._keras_history[0], depth=2), SymmetricPadding2D) + # block pool assert isinstance(self.step_in(block_pool._keras_history[0], depth=2), keras.layers.pooling.MaxPooling2D) + assert self.step_in(block_pool._keras_history[0], depth=3).name == 'Block_2c_Pad' + assert isinstance(self.step_in(block_pool._keras_history[0], depth=3), ReflectionPadding2D) def test_batch_normalisation(self, base, input_x): + # import keras base.part_of_block += 1 bn = base.batch_normalisation(input_x)._keras_history[0] assert isinstance(bn, keras.layers.normalization.BatchNormalization) assert bn.name == "Block_0a_BN" def test_padding_layer_zero_padding(self, base, input_x): - base.part_of_block += 2 + # import keras padding_size = ((1, 1), (0, 0)) zp = base.padding_layer('ZeroPad2D') + assert zp == keras.layers.convolutional.ZeroPadding2D + assert base.padding_layer('ZeroPadding2D') == keras.layers.convolutional.ZeroPadding2D + assert base.padding_layer(keras.layers.ZeroPadding2D) == keras.layers.convolutional.ZeroPadding2D assert zp.__name__ == 'ZeroPadding2D' zp_ap = zp(padding=padding_size)(input_x) assert zp_ap._keras_history[0].padding == ((1, 1), (0, 0)) - print('abc') + + def test_padding_layer_sym_padding(self, base, input_x): + # import keras + padding_size = ((1, 1), (0, 0)) + zp = base.padding_layer('SymPad2D') + assert zp == SymmetricPadding2D + assert base.padding_layer('SymmetricPadding2D') == SymmetricPadding2D + assert base.padding_layer(SymmetricPadding2D) == SymmetricPadding2D + assert zp.__name__ == 'SymmetricPadding2D' + zp_ap = zp(padding=padding_size)(input_x) + assert zp_ap._keras_history[0].padding == ((1, 1), (0, 0)) + + def test_padding_layer_ref_padding(self, base, input_x): + # import keras + padding_size = ((1, 1), (0, 0)) + zp = base.padding_layer('RefPad2D') + assert zp == ReflectionPadding2D + assert base.padding_layer('ReflectionPadding2D') == ReflectionPadding2D + assert base.padding_layer(ReflectionPadding2D) == ReflectionPadding2D + assert zp.__name__ == 'ReflectionPadding2D' + zp_ap = zp(padding=padding_size)(input_x) + assert zp_ap._keras_history[0].padding == ((1, 1), (0, 0)) + + def test_padding_layer_raises(self, base, input_x): + # import keras + with pytest.raises(NotImplementedError) as einfo: + base.padding_layer('FalsePadding2D') + assert "`'FalsePadding2D'' is not implemented as padding. " \ + "Use one of those: i) `RefPad2D', ii) `SymPad2D', iii) `ZeroPad2D'" in str(einfo.value) + with pytest.raises(TypeError) as einfo: + base.padding_layer(keras.layers.Conv2D) + assert "`Conv2D' is not a valid padding layer type. Use one of those: "\ + "i) ReflectionPadding2D, ii) SymmetricPadding2D, iii) ZeroPadding2D" in str(einfo.value) + + + +