diff --git a/mlair/configuration/toar_data_v2_settings.py b/mlair/configuration/toar_data_v2_settings.py
index a8bb9f42cf5a1967f150aa18019c2dbdc89f43a2..da17b90d32088431566f93ae951545ff5a168079 100644
--- a/mlair/configuration/toar_data_v2_settings.py
+++ b/mlair/configuration/toar_data_v2_settings.py
@@ -10,7 +10,7 @@ def toar_data_v2_settings(sampling="daily") -> Tuple[str, Dict]:
     :return: Service url and optional headers
     """
     if sampling == "daily":  # pragma: no branch
-        TOAR_SERVICE_URL = "https://toar-data.fz-juelich.de/statistics/api/v1/"
+        TOAR_SERVICE_URL = "https://toar-data.fz-juelich.de/api/v2/analysis/statistics/"
         headers = {}
     elif sampling == "hourly" or sampling == "meta":
         TOAR_SERVICE_URL = "https://toar-data.fz-juelich.de/api/v2/"
diff --git a/mlair/data_handler/data_handler_single_station.py b/mlair/data_handler/data_handler_single_station.py
index 0be52e937b963a9c277992c57e00f9db282f48a5..724d8c8f54423bbc0311cb9775463d1eba9b044e 100644
--- a/mlair/data_handler/data_handler_single_station.py
+++ b/mlair/data_handler/data_handler_single_station.py
@@ -331,7 +331,7 @@ class DataHandlerSingleStation(AbstractDataHandler):
         file_name = self._set_file_name(path, station, statistics_per_var)
         meta_file = self._set_meta_file_name(path, station, statistics_per_var)
         if self.overwrite_local_data is True:
-            logging.debug(f"overwrite_local_data is true, therefore reload {file_name}")
+            logging.debug(f"{self.station[0]}: overwrite_local_data is true, therefore reload {file_name}")
             if os.path.exists(file_name):
                 os.remove(file_name)
             if os.path.exists(meta_file):
@@ -339,22 +339,22 @@ class DataHandlerSingleStation(AbstractDataHandler):
             data, meta = data_sources.download_data(file_name, meta_file, station, statistics_per_var, sampling,
                                             store_data_locally=store_data_locally, data_origin=data_origin,
                                             time_dim=self.time_dim, target_dim=self.target_dim, iter_dim=self.iter_dim)
-            logging.debug(f"loaded new data")
+            logging.debug(f"{self.station[0]}: loaded new data")
         else:
             try:
-                logging.debug(f"try to load local data from: {file_name}")
+                logging.debug(f"{self.station[0]}: try to load local data from: {file_name}")
                 data = xr.open_dataarray(file_name)
                 meta = pd.read_csv(meta_file, index_col=0)
                 self.check_station_meta(meta, station, data_origin, statistics_per_var)
-                logging.debug("loading finished")
+                logging.debug(f"{self.station[0]}: loading finished")
             except FileNotFoundError as e:
-                logging.debug(e)
-                logging.debug(f"load new data")
+                logging.debug(f"{self.station[0]}: {e}")
+                logging.debug(f"{self.station[0]}: load new data")
                 data, meta = data_sources.download_data(file_name, meta_file, station, statistics_per_var, sampling,
                                                         store_data_locally=store_data_locally, data_origin=data_origin,
                                                         time_dim=self.time_dim, target_dim=self.target_dim,
                                                         iter_dim=self.iter_dim)
-                logging.debug("loading finished")
+                logging.debug(f"{self.station[0]}: loading finished")
         # create slices and check for negative concentration.
         data = self._slice_prep(data, start=start, end=end)
         data = self.check_for_negative_concentrations(data)
@@ -372,7 +372,7 @@ class DataHandlerSingleStation(AbstractDataHandler):
             if v is None or k not in meta.index:
                 continue
             if meta.at[k, station[0]] != v:
-                logging.debug(f"meta data does not agree with given request for {k}: {v} (requested) != "
+                logging.debug(f"{station[0]}: meta data does not agree with given request for {k}: {v} (requested) != "
                               f"{meta.at[k, station[0]]} (local). Raise FileNotFoundError to trigger new "
                               f"grapping from web.")
                 raise FileNotFoundError
diff --git a/mlair/data_handler/data_handler_with_filter.py b/mlair/data_handler/data_handler_with_filter.py
index e5760e9afb52f9d55071214fb632601d744f124e..8c28faab29aa40f1aac7adcac4292626dd2d0343 100644
--- a/mlair/data_handler/data_handler_with_filter.py
+++ b/mlair/data_handler/data_handler_with_filter.py
@@ -374,7 +374,7 @@ class DataHandlerClimateFirFilterSingleStation(DataHandlerFirFilterSingleStation
     def apply_filter(self):
         """Apply FIR filter only on inputs."""
         self.apriori = self.apriori.get(str(self)) if isinstance(self.apriori, dict) else self.apriori
-        logging.info(f"{self.station}: call ClimateFIRFilter")
+        logging.info(f"{self.station[0]}: call ClimateFIRFilter")
         climate_filter = ClimateFIRFilter(self.input_data.astype("float32"), self.fs, self.filter_order,
                                           self.filter_cutoff_freq,
                                           self.filter_window_type, time_dim=self.time_dim, var_dim=self.target_dim,
diff --git a/mlair/helpers/data_sources/data_loader.py b/mlair/helpers/data_sources/data_loader.py
index 7131c6b3fa4f340715c53e94163ce3e67ec40003..e906acac28d29871d3cef2ec377d1ca2da3ae1cf 100644
--- a/mlair/helpers/data_sources/data_loader.py
+++ b/mlair/helpers/data_sources/data_loader.py
@@ -85,6 +85,36 @@ class EmptyQueryResult(Exception):
     pass
 
 
+def get_data_with_query(opts: Dict, headers: Dict, as_json: bool = True, max_retries=5, timeout_base=60) -> bytes:
+    """
+    Download data from statistics rest api. This API is based on three steps: (1) post query and retrieve job id, (2)
+    read status of id until finished, (3) download data with job id.
+    """
+    url = create_url(**opts)
+    response_error = None
+    for retry in range(max_retries + 1):
+        time.sleep(random.random())
+        try:
+            timeout = timeout_base * (2 ** retry)
+            logging.info(f"connect (retry={retry}, timeout={timeout}) {url}")
+            start_time = time.time()
+            with TimeTracking(name=url):
+                session = retries_session(max_retries=0)
+                response = session.get(url, headers=headers, timeout=(5, 5))  # timeout=(open, read)
+                while (time.time() - start_time) < timeout:
+                    response = requests.get(response.json()["status"], timeout=(5, 5))
+                    if response.history:
+                        break
+                    time.sleep(2)
+                return response.content
+        except Exception as e:
+            time.sleep(retry)
+            logging.debug(f"There was an error for request {url}: {e}")
+            response_error = e
+        if retry + 1 >= max_retries:
+            raise EmptyQueryResult(f"There was an RetryError for request {url}: {response_error}")
+
+
 def get_data(opts: Dict, headers: Dict, as_json: bool = True, max_retries=5, timeout_base=60) -> Union[Dict, List, str]:
     """
     Download join data using requests framework.
diff --git a/mlair/helpers/data_sources/toar_data_v2.py b/mlair/helpers/data_sources/toar_data_v2.py
index 5d1cacc604f4288e48d12a72f8a24ba0d8b21fd1..3f2bc79d2bf3143452b30305692dd00f550ed930 100644
--- a/mlair/helpers/data_sources/toar_data_v2.py
+++ b/mlair/helpers/data_sources/toar_data_v2.py
@@ -10,10 +10,12 @@ from io import StringIO
 import pandas as pd
 import pytz
 from timezonefinder import TimezoneFinder
+from io import BytesIO
+import zipfile
 
 from mlair.configuration.toar_data_v2_settings import toar_data_v2_settings
 from mlair.helpers import to_list
-from mlair.helpers.data_sources.data_loader import EmptyQueryResult, get_data, correct_stat_name
+from mlair.helpers.data_sources.data_loader import EmptyQueryResult, get_data, correct_stat_name, get_data_with_query
 
 str_or_none = Union[str, None]
 
@@ -120,9 +122,9 @@ def prepare_meta(meta, sampling, stat_var, var):
     for m in meta:
         opts = {}
         if sampling == "daily":
-            opts["timeseries_id"] = m.pop("id")
+            opts["id"] = m.pop("id")
             m["id"] = None
-            opts["names"] = stat_var[var]
+            opts["statistics"] = stat_var[var]
             opts["sampling"] = sampling
         out.append(([m], opts))
     return out
@@ -167,17 +169,32 @@ def load_timeseries_data(timeseries_meta, url_base, opts, headers, sampling):
         series_id = meta["id"]
         # opts = {"base": url_base, "service": f"data/timeseries/{series_id}"}
         opts = {"base": url_base, "service": f"data/timeseries", "param_id": series_id, "format": "csv", **opts}
-        if sampling != "hourly":
+        if sampling == "hourly":
+            res = get_data(opts, headers, as_json=False)
+            data = extract_timeseries_data(res, "string")
+        else:
             opts["service"] = None
-        res = get_data(opts, headers, as_json=False)
-        data = pd.read_csv(StringIO(res), comment="#", index_col="datetime", parse_dates=True,
-                           infer_datetime_format=True)
+            opts["format"] = None
+            res = get_data_with_query(opts, headers, as_json=False)
+            data = extract_timeseries_data(res, "bytes")
         if len(data.index) > 0:
-            data = data[correct_stat_name(opts.get("names", "value"))].rename(meta["variable"]["name"])
+            data = data[correct_stat_name(opts.get("statistics", "value"))].rename(meta["variable"]["name"])
             coll.append(data)
     return coll
 
 
+def extract_timeseries_data(result, result_format):
+    if result_format == "string":
+        return pd.read_csv(StringIO(result), comment="#", index_col="datetime", parse_dates=True,
+                    infer_datetime_format=True)
+    elif result_format == "bytes":
+        with zipfile.ZipFile(BytesIO(result)) as file:
+            return pd.read_csv(BytesIO(file.read(file.filelist[0].filename)), comment="#", index_col="datetime",
+                               parse_dates=True)
+    else:
+        raise ValueError(f"Unknown result format given: {result_format}")
+
+
 def load_station_information(station_name: List[str], url_base: str, headers: Dict):
     # opts = {"base": url_base, "service": f"stationmeta/{station_name[0]}"}
     opts = {"base": url_base, "service": f"stationmeta", "param_id": station_name[0]}
diff --git a/mlair/run_modules/pre_processing.py b/mlair/run_modules/pre_processing.py
index 5710b63336b5c3e505363b90215a8cb631c3da22..d56d064ad618b1dbae7b9c8b08a5887e8577dcbe 100644
--- a/mlair/run_modules/pre_processing.py
+++ b/mlair/run_modules/pre_processing.py
@@ -295,11 +295,12 @@ class PreProcessing(RunEnvironment):
         else:  # serial solution
             logging.info("use serial validate station approach")
             kwargs.update({"return_strategy": "result"})
-            for station in set_stations:
+            for i, station in enumerate(set_stations):
                 dh, s = f_proc(data_handler, station, set_name, store_processed_data, **kwargs)
                 if dh is not None:
                     collection.add(dh)
                     valid_stations.append(s)
+                logging.info(f"...finished: {s} ({int((i + 1.) / len(set_stations) * 100)}%)")
 
         logging.info(f"run for {t_outer} to check {len(set_stations)} station(s). Found {len(collection)}/"
                      f"{len(set_stations)} valid stations ({set_name}).")