diff --git a/src/statistics.py b/src/statistics.py
index 5a3c4a65ae1215affad582f11e3188e73483f031..060081de9e21f5cbc7c560066451bbdbf14b7eb1 100644
--- a/src/statistics.py
+++ b/src/statistics.py
@@ -21,10 +21,20 @@ def standardise(data: Data, dim: Union[str, int]) -> Tuple[Data, Data, Data]:
             #. std: Standard deviation of data
             #. data: Standardised data
     """
-
     return data.mean(dim), data.std(dim), (data - data.mean(dim)) / data.std(dim)
 
 
+def standardise_inverse(data: Data, mean: Data, std: Data) -> Data:
+    """
+    This is the inverse function of `standardise` and therefore vanishes the standardising.
+    :param data:
+    :param mean:
+    :param std:
+    :return:
+    """
+    return data * std + mean
+
+
 def centre(data: Data, dim: Union[str, int]) -> Tuple[Data, None, Data]:
     """
     This function centres a xarray.dataarray (along dim) or pandas.DataFrame (along axis) to mean=0
@@ -37,5 +47,14 @@ def centre(data: Data, dim: Union[str, int]) -> Tuple[Data, None, Data]:
             #. std: Standard deviation of data
             #. data: Standardised data
     """
-
     return data.mean(dim), None, data - data.mean(dim)
+
+
+def centre_inverse(data: Data, mean: Data) -> Data:
+    """
+    This function is the inverse function of `centre` and therefore adds the given values of mean to the data.
+    :param data:
+    :param mean:
+    :return:
+    """
+    return data + mean
diff --git a/test/test_statistics.py b/test/test_statistics.py
index 518d817fa1b2ca358ef2a260cb1cca78f572ca0c..d31f4e9919da27e679019b892d98557dee9a7f1d 100644
--- a/test/test_statistics.py
+++ b/test/test_statistics.py
@@ -2,7 +2,7 @@ import pytest
 import xarray as xr
 import pandas as pd
 import numpy as np
-from src.statistics import standardise, centre
+from src.statistics import standardise, standardise_inverse, centre, centre_inverse
 
 
 @pytest.fixture(scope='module')
@@ -24,7 +24,8 @@ def xarray(input_data):
 
 class TestStandardise:
 
-    @pytest.mark.parametrize('data_org, dim', [(pytest.lazy_fixture('pandas'), 0), (pytest.lazy_fixture('xarray'), 'index')])
+    @pytest.mark.parametrize('data_org, dim', [(pytest.lazy_fixture('pandas'), 0),
+                                               (pytest.lazy_fixture('xarray'), 'index')])
     def test_standardise(self, data_org, dim):
         mean, std, data = standardise(data_org, dim)
         assert np.testing.assert_almost_equal(mean, [2, -5, 10], decimal=1) is None
@@ -32,12 +33,28 @@ class TestStandardise:
         assert np.testing.assert_almost_equal(data.mean(dim), [0, 0, 0]) is None
         assert np.testing.assert_almost_equal(data.std(dim), [1, 1, 1]) is None
 
+    @pytest.mark.parametrize('data_org, dim', [(pytest.lazy_fixture('pandas'), 0),
+                                               (pytest.lazy_fixture('xarray'), 'index')])
+    def test_standardise_inverse(self, data_org, dim):
+        mean, std, data = standardise(data_org, dim)
+        data_recovered = standardise_inverse(data, mean, std)
+        assert np.testing.assert_array_almost_equal(data_org, data_recovered) is None
+
 
 class TestCentre:
 
-    @pytest.mark.parametrize('data_org, dim', [(pytest.lazy_fixture('pandas'), 0), (pytest.lazy_fixture('xarray'), 'index')])
+    @pytest.mark.parametrize('data_org, dim', [(pytest.lazy_fixture('pandas'), 0),
+                                               (pytest.lazy_fixture('xarray'), 'index')])
     def test_centre(self, data_org, dim):
         mean, std, data = centre(data_org, dim)
         assert np.testing.assert_almost_equal(mean, [2, -5, 10], decimal=1) is None
         assert std is None
         assert np.testing.assert_almost_equal(data.mean(dim), [0, 0, 0]) is None
+
+    @pytest.mark.parametrize('data_org, dim', [(pytest.lazy_fixture('pandas'), 0),
+                                               (pytest.lazy_fixture('xarray'), 'index')])
+    def test_centre_inverse(self, data_org, dim):
+        mean, _, data = centre(data_org, dim)
+        data_recovered = centre_inverse(data, mean)
+        assert np.testing.assert_array_almost_equal(data_org, data_recovered) is None
+