From a99da0a3e15c61ce4923852d93cf877fd602f074 Mon Sep 17 00:00:00 2001 From: leufen1 <l.leufen@fz-juelich.de> Date: Wed, 24 May 2023 13:50:05 +0200 Subject: [PATCH] add dropna calls --- mlair/helpers/filter.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/mlair/helpers/filter.py b/mlair/helpers/filter.py index 097eaf97..f834895d 100644 --- a/mlair/helpers/filter.py +++ b/mlair/helpers/filter.py @@ -382,7 +382,7 @@ class ClimateFIRFilter(FIRFilter): monthly_mean.sel(month=month, drop=True), monthly) # transform monthly information into original sampling rate - return monthly.resample({time_dim: sampling}).interpolate() + return monthly.dropna(dim=time_dim).resample({time_dim: sampling}).interpolate() @staticmethod def _compute_hourly_mean_per_month(data: xr.DataArray, time_dim: str, as_anomaly: bool) -> Dict[int, xr.DataArray]: @@ -422,7 +422,7 @@ class ClimateFIRFilter(FIRFilter): for month in means.keys(): hourly_mean_single_month = means[month].sel(hour=hour, drop=True) h_coll = xr.where((h_coll[f"{time_dim}.month"] == month), hourly_mean_single_month, h_coll) - h_coll = h_coll.resample({time_dim: sampling}).interpolate() + h_coll = h_coll.dropna(time_dim).resample({time_dim: sampling}).interpolate() h_coll = h_coll.sel({time_dim: (h_coll[f"{time_dim}.hour"] == hour)}) return h_coll -- GitLab