diff --git a/test/test_model_modules/test_abstract_model_class.py b/test/test_model_modules/test_abstract_model_class.py index a1ec4c63a2b3b44c26bbf722a3d4d84aec112bec..2a1578aa28c061fce40be2e3f2f2a29306663463 100644 --- a/test/test_model_modules/test_abstract_model_class.py +++ b/test/test_model_modules/test_abstract_model_class.py @@ -147,16 +147,16 @@ class TestAbstractModelClass: with pytest.raises(ValueError) as einfo: amc.compile_options = {"optimizer": keras.optimizers.Adam()} assert "Got different values or arguments for same argument: self.optimizer=<class" \ - " 'tensorflow.python.keras.optimizer_v2.gradient_descent.SGD'> and " \ - "'optimizer': <class 'tensorflow.python.keras.optimizer_v2.adam.Adam'>" in str(einfo.value) + " 'keras.optimizer_v2.gradient_descent.SGD'> and " \ + "'optimizer': <class 'keras.optimizer_v2.adam.Adam'>" in str(einfo.value) def test_compile_options_setter_as_mix_attr_dict_invalid_duplicates_same_optimizer_other_args(self, amc): amc.optimizer = keras.optimizers.SGD(lr=0.1) with pytest.raises(ValueError) as einfo: amc.compile_options = {"optimizer": keras.optimizers.SGD(lr=0.001)} assert "Got different values or arguments for same argument: self.optimizer=<class" \ - " 'tensorflow.python.keras.optimizer_v2.gradient_descent.SGD'> and " \ - "'optimizer': <class 'tensorflow.python.keras.optimizer_v2.gradient_descent.SGD'>" in str(einfo.value) + " 'keras.optimizer_v2.gradient_descent.SGD'> and " \ + "'optimizer': <class 'keras.optimizer_v2.gradient_descent.SGD'>" in str(einfo.value) def test_compile_options_setter_as_dict_invalid_keys(self, amc): with pytest.raises(ValueError) as einfo: diff --git a/test/test_model_modules/test_flatten_tail.py b/test/test_model_modules/test_flatten_tail.py index 83861be561fbe164d09048f1b748b51977b2fc27..8a858b438357ff3b39834fb0aea01967df8f2f9c 100644 --- a/test/test_model_modules/test_flatten_tail.py +++ b/test/test_model_modules/test_flatten_tail.py @@ -27,7 +27,7 @@ class TestGetActivation: def test_layer_act(self, model_input): x_in = get_activation(model_input, activation=ELU, name='adv_layer') act = x_in._keras_history[0] - assert act.name == 'adv_layer' + assert act.name == 'tf.nn.elu' def test_layer_act_invalid(self, model_input): with pytest.raises(TypeError) as einfo: @@ -62,8 +62,8 @@ class TestFlattenTail: assert final_dense.units == 2 assert final_dense.kernel_regularizer is None inner_act = self.step_in(final_dense) - assert inner_act.name == 'Main_tail_act' - assert inner_act.__class__.__name__ == 'ELU' + assert inner_act.name == 'tf.nn.elu' + assert inner_act.__class__.__name__ == 'TFOpLambda' inner_dense = self.step_in(inner_act) assert inner_dense.name == 'Main_tail_inner_Dense' assert inner_dense.units == 64 @@ -112,9 +112,8 @@ class TestFlattenTail: 'dtype': 'float32', 'data_format': 'channels_last'} reduc_act = self.step_in(flatten) - assert reduc_act.get_config() == {'name': 'Main_tail_all_conv_act', 'trainable': True, - 'dtype': 'float32', 'alpha': 1.0} - + assert reduc_act.get_config() == {'name': 'tf.nn.elu_2', 'trainable': True, 'function': 'nn.elu', + 'dtype': 'float32'} reduc_conv = self.step_in(reduc_act) assert reduc_conv.kernel_size == (1, 1) diff --git a/test/test_model_modules/test_inception_model.py b/test/test_model_modules/test_inception_model.py index 0ed975d054841d9d4cfb8b4c964fa0cd2d4e2667..0a0dd38fa9d354c1243127df1ae9e079a6ca88e9 100644 --- a/test/test_model_modules/test_inception_model.py +++ b/test/test_model_modules/test_inception_model.py @@ -43,7 +43,7 @@ class TestInceptionModelBase: assert base.part_of_block == 1 assert tower.name == 'Block_0a_act_2/Relu:0' act_layer = tower._keras_history[0] - assert isinstance(act_layer, ReLU) + assert isinstance(act_layer, keras.layers.ReLU) assert act_layer.name == "Block_0a_act_2" # check previous element of tower (conv2D) conv_layer = self.step_in(act_layer) @@ -60,7 +60,7 @@ class TestInceptionModelBase: assert pad_layer.name == 'Block_0a_Pad' # check previous element of tower (activation) act_layer2 = self.step_in(pad_layer) - assert isinstance(act_layer2, ReLU) + assert isinstance(act_layer2, keras.layers.ReLU) assert act_layer2.name == "Block_0a_act_1" # check previous element of tower (conv2D) conv_layer2 = self.step_in(act_layer2) @@ -80,7 +80,7 @@ class TestInceptionModelBase: # assert tower.name == 'Block_0a_act_2/Relu:0' assert tower.name == 'Block_0a_act_2/Relu:0' act_layer = tower._keras_history[0] - assert isinstance(act_layer, ReLU) + assert isinstance(act_layer, keras.layers.ReLU) assert act_layer.name == "Block_0a_act_2" # check previous element of tower (batch_normal) batch_layer = self.step_in(act_layer) @@ -101,7 +101,7 @@ class TestInceptionModelBase: assert pad_layer.name == 'Block_0a_Pad' # check previous element of tower (activation) act_layer2 = self.step_in(pad_layer) - assert isinstance(act_layer2, ReLU) + assert isinstance(act_layer2, keras.layers.ReLU) assert act_layer2.name == "Block_0a_act_1" # check previous element of tower (conv2D) conv_layer2 = self.step_in(act_layer2) @@ -124,7 +124,7 @@ class TestInceptionModelBase: tower = base.create_conv_tower(activation=keras.layers.LeakyReLU, **opts) assert tower.name == 'Block_0b_act_2/LeakyRelu:0' act_layer = tower._keras_history[0] - assert isinstance(act_layer, LeakyReLU) + assert isinstance(act_layer, keras.layers.LeakyReLU) assert act_layer.name == "Block_0b_act_2" def test_create_conv_tower_1x1(self, base, input_x): @@ -134,7 +134,7 @@ class TestInceptionModelBase: assert base.part_of_block == 1 assert tower.name == 'Block_0a_act_1/Relu:0' act_layer = tower._keras_history[0] - assert isinstance(act_layer, ReLU) + assert isinstance(act_layer, keras.layers.ReLU) assert act_layer.name == "Block_0a_act_1" # check previous element of tower (conv2D) conv_layer = self.step_in(act_layer) @@ -160,7 +160,7 @@ class TestInceptionModelBase: assert base.part_of_block == 1 assert tower.name == 'Block_0a_act_1/Relu:0' act_layer = tower._keras_history[0] - assert isinstance(act_layer, ReLU) + assert isinstance(act_layer, keras.layers.ReLU) assert act_layer.name == "Block_0a_act_1" # check previous element of tower (conv2D) conv_layer = self.step_in(act_layer)