diff --git a/src/plotting/postprocessing_plotting.py b/src/plotting/postprocessing_plotting.py index b39de8e957a110121c0e8812608d32aad3431570..854182613cdb63456dc8f62d2421560d829ee629 100644 --- a/src/plotting/postprocessing_plotting.py +++ b/src/plotting/postprocessing_plotting.py @@ -639,15 +639,16 @@ class PlotTimeSeries(RunEnvironment): def _plot_ahead(self, ax, data): color = sns.color_palette("Blues_d", self._window_lead_time).as_hex() for ahead in data.coords["ahead"].values: - plot_data = data.sel(type="CNN", ahead=ahead).drop(["type", "ahead"]).squeeze() - index = plot_data.index + np.timedelta64(int(ahead), self._sampling) + plot_data = data.sel(type="CNN", ahead=ahead).drop(["type", "ahead"]).squeeze().shift(index=ahead) label = f"{ahead}{self._sampling}" - ax.plot(index, plot_data.values, color=color[ahead-1], label=label) + ax.plot(plot_data, color=color[ahead-1], label=label) def _plot_obs(self, ax, data): - obs_data = data.sel(type="obs", ahead=1) - index = data.index + np.timedelta64(1, self._sampling) - ax.plot(index, obs_data.values, color=matplotlib.colors.cnames["green"], label="obs") + ahead = 1 + obs_data = data.sel(type="obs", ahead=ahead).shift(index=ahead) + # index = data.index + np.timedelta64(1, self._sampling) + # ax.plot(index, obs_data.values, color=matplotlib.colors.cnames["green"], label="obs") + ax.plot(obs_data, color=matplotlib.colors.cnames["green"], label="obs") @staticmethod def _get_time_range(data): diff --git a/src/run_modules/post_processing.py b/src/run_modules/post_processing.py index 962c9f52065729381ce11e8a8adcbeed45a4c011..0a61ee4f07d0c6eccf698aa16d3de9d7275e75f6 100644 --- a/src/run_modules/post_processing.py +++ b/src/run_modules/post_processing.py @@ -65,6 +65,8 @@ class PostProcessing(RunEnvironment): with TimeTracking(name="boot predictions"): bootstrap_predictions = self.model.predict_generator(generator=bootstraps.boot_strap_generator(), steps=bootstraps.get_boot_strap_generator_length()) + if isinstance(bootstrap_predictions, list): + bootstrap_predictions = bootstrap_predictions[-1] bootstrap_meta = np.array(bootstraps.get_boot_strap_meta()) variables = np.unique(bootstrap_meta[:, 0]) for station in np.unique(bootstrap_meta[:, 1]): @@ -162,7 +164,7 @@ class PostProcessing(RunEnvironment): for normalised in [True, False]: # create empty arrays - nn_prediction, persistence_prediction, ols_prediction = self._create_empty_prediction_arrays(data, count=3) + nn_prediction, persistence_prediction, ols_prediction, observation = self._create_empty_prediction_arrays(data, count=4) # nn forecast nn_prediction = self._create_nn_forecast(input_data, nn_prediction, mean, std, transformation_method, normalised) @@ -175,7 +177,7 @@ class PostProcessing(RunEnvironment): ols_prediction = self._create_ols_forecast(input_data, ols_prediction, mean, std, transformation_method, normalised) # observation - observation = self._create_observation(data, None, mean, std, transformation_method, normalised) + observation = self._create_observation(data, observation, mean, std, transformation_method, normalised) # merge all predictions full_index = self.create_fullindex(data.data.indexes['datetime'], self._get_frequency()) @@ -195,9 +197,8 @@ class PostProcessing(RunEnvironment): getter = {"daily": "1D", "hourly": "1H"} return getter.get(self._sampling, None) - @staticmethod - def _create_observation(data, _, mean, std, transformation_method, normalised): - obs = data.observation.copy() + def _create_observation(self, data, _, mean, std, transformation_method, normalised): + obs = data.label.copy() if not normalised: obs = statistics.apply_inverse_transformation(obs, mean, std, transformation_method) return obs @@ -235,7 +236,9 @@ class PostProcessing(RunEnvironment): tmp_nn = self.model.predict(input_data) if not normalised: tmp_nn = statistics.apply_inverse_transformation(tmp_nn, mean, std, transformation_method) - if tmp_nn.ndim == 3: + if isinstance(tmp_nn, list): + nn_prediction.values = np.swapaxes(np.expand_dims(tmp_nn[-1], axis=1), 2, 0) + elif tmp_nn.ndim == 3: nn_prediction.values = np.swapaxes(np.expand_dims(tmp_nn[-1, ...], axis=1), 2, 0) elif tmp_nn.ndim == 2: nn_prediction.values = np.swapaxes(np.expand_dims(tmp_nn, axis=1), 2, 0)